scholarly journals Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

2015 ◽  
Vol 92 (7) ◽  
Author(s):  
Alexandros Karam ◽  
Kyriakos Tamvakis
2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Yuta Hamada ◽  
Hikaru Kawai ◽  
Kiyoharu Kawana ◽  
Kin-ya Oda ◽  
Kei Yagyu

AbstractWe propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analogue of the Coleman–Weinberg mechanism, in addition to the Standard Model with heavy Majorana right-handed neutrinos. By assuming a $$Z_2 $$ Z 2 symmetry, one of the scalars becomes a DM candidate whose property is almost the same as the minimal Higgs-portal scalar DM. In this model, the MPP can naturally realize a saddle point in the Higgs potential at high energy scales. By the renormalization-group analysis, we study the critical Higgs inflation with non-minimal coupling $$\xi |H|^2 R$$ ξ | H | 2 R that utilizes the saddle point of the Higgs potential. We find that it is possible to realize successful inflation even for $$\xi =25$$ ξ = 25 and that the heaviest right-handed neutrino is predicted to have a mass around $$10^{14}$$ 10 14 $$\mathrm{GeV}$$ GeV to meet the current cosmological observations. Such a small value of $$\xi $$ ξ can be realized by the Higgs-portal coupling $$\lambda _{SH}\simeq 0.32$$ λ SH ≃ 0.32 and the vacuum expectation value of the additional neutral scalar $$\langle \phi \rangle \simeq 2.7$$ ⟨ ϕ ⟩ ≃ 2.7  TeV, which correspond to the dark matter mass 2.0 TeV, its spin-independent cross section $$1.8\times 10^{-9}$$ 1.8 × 10 - 9  pb, and the mass of additional neutral scalar 190 GeV.


2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Catarina Cosme ◽  
João G. Rosa ◽  
O. Bertolami

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
D. M. Barreiros ◽  
F. R. Joaquim ◽  
R. Srivastava ◽  
J. W. F. Valle

Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal $$ {\mathcal{Z}}_8 $$ Z 8 discrete symmetry, broken to a residual $$ {\mathcal{Z}}_2 $$ Z 2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed $$ {\mathcal{Z}}_8 $$ Z 8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.


Author(s):  
W-Y. PAUCHY HWANG

We attempt to answer whether neutrinos and antineutrinos, such as those in the cosmic neutrino background, would clusterize among themselves or even with other dark-matter particles, under certain time span, say 1 Gyr. With neutrino masses in place, the similarity with the ordinary matter increases and so is our confidence for neutrino clustering if time is long enough. In particular, the clusterings could happen with some seeds (cf. see the text for definition), the chance in the dark-matter world to form dark-matter galaxies increases. If the dark-matter galaxies would exist in a time span of 1 Gyr, then they might even dictate the formation of the ordinary galaxies (i.e. the dark-matter galaxies get formed first); thus, the implications for the structure of our Universe would be tremendous.


Sign in / Sign up

Export Citation Format

Share Document