scholarly journals Remarks on the necessity and implications of state-dependence in the black hole interior

2016 ◽  
Vol 93 (8) ◽  
Author(s):  
Kyriakos Papadodimas ◽  
Suvrat Raju
Author(s):  
Netta Engelhardt ◽  
Geoff Penington ◽  
Arvin Shahbazi-Moghaddam

Abstract We argue that novel (highly nonclassical) quantum extremal surfaces play a crucial role in reconstructing the black hole interior even for isolated, single-sided, non-evaporating black holes (i.e. with no auxiliary reservoir). Specifically, any code subspace where interior outgoing modes can be excited will have a quantum extremal surface in its maximally mixed state. We argue that as a result, reconstruction of interior outgoing modes is always exponentially complex. Our construction provides evidence in favor of a strong Python’s lunch proposal: that nonminimal quantum extremal surfaces are the exclusive source of exponential complexity in the holographic dictionary. We also comment on the relevance of these quantum extremal surfaces to the geometrization of state dependence in the typicality arguments for firewalls.


2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
José L.F. Barbón ◽  
Javier Martín-García ◽  
Martin Sasieta

2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1379-1384 ◽  
Author(s):  
H. CULETU

A direct relation between the time-dependent Milne geometry and the Rindler spacetime is shown. Milne's metric corresponds to the region beyond Rindler's event horizon (in the wedge t ≻ |x|). We point out that inside a Schwarzschild black hole and near its horizon, the metric may be Milne's flat metric. It was found that the shear tensor associated to a congruence of fluid particles of the RHIC expanding fireball has the same structure as that corresponding to the anisotropic fluid from the black hole interior, even though the latter geometry is curved.


2015 ◽  
Vol 2015 (8) ◽  
Author(s):  
Ram Brustein ◽  
A. J. M. Medved

Author(s):  
Carlos Castro Perelman

A brief review of the essentials of Asymptotic Safety and the Renormalization Group (RG) improvement of the Schwarzschild Black Hole that removes the r = 0 singularity is presented. It is followed with a RG-improvement of the Kantowski-Sachs metric associated with a Schwarzschild black hole interior and such that there is no singularity at t = 0 due to the running Newtonian coupling G(t) (vanishing at t = 0). Two temporal horizons at t _- \simeq t_P and t_+ \simeq t_H are found. For times below the Planck scale t < t_P, and above the Hubble time t > t_H, the components of the Kantowski-Sachs metric exhibit a key sign change, so the roles of the spatial z and temporal t coordinates are exchanged, and one recovers a repulsive inflationary de Sitter-like core around z = 0, and a Schwarzschild-like metric in the exterior region z > R_H = 2G_o M. The inclusion of a running cosmological constant \Lambda (t) follows. We proceed with the study of a dilaton-gravity (scalar-tensor theory) system within the context of Weyl's geometry that permits to single out the expression for the classical potential V (\phi ) = \kappa\phi^4, instead of being introduced by hand, and find a family of metric solutions which are conformally equivalent to the (Anti) de Sitter metric. To conclude, an ansatz for the truncated effective average action of ordinary dilaton-gravity in Riemannian geometry is introduced, and a RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is explored.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 178
Author(s):  
Kirill Bronnikov ◽  
Sergey Bolokhov ◽  
Milena Skvortsova

We discuss the properties of the previously constructed model of a Schwarzschild black hole interior where the singularity is replaced by a regular bounce, ultimately leading to a white hole. We assume that the black hole is young enough so that the Hawking radiation may be neglected. The model is semiclassical in nature and uses as a source of gravity the effective stress-energy tensor (SET) corresponding to vacuum polarization of quantum fields, and the minimum spherical radius is a few orders of magnitude larger than the Planck length, so that the effects of quantum gravity should still be negligible. We estimate the other quantum contributions to the effective SET, caused by a nontrivial topology of spatial sections and particle production from vacuum due to a nonstationary gravitational field and show that these contributions are negligibly small as compared to the SET due to vacuum polarization. The same is shown for such classical phenomena as accretion of different kinds of matter to the black hole and its further motion to the would-be singularity. Thus, in a clear sense, our model of a semiclassical bounce instead of a Schwarzschild singularity is stable under both quantum and classical perturbations.


Sign in / Sign up

Export Citation Format

Share Document