Kantowski-Sachs Cosmology, Weyl Geometry and Asymptotic Safety in Quantum Gravity

Author(s):  
Carlos Castro Perelman

A brief review of the essentials of Asymptotic Safety and the Renormalization Group (RG) improvement of the Schwarzschild Black Hole that removes the r = 0 singularity is presented. It is followed with a RG-improvement of the Kantowski-Sachs metric associated with a Schwarzschild black hole interior and such that there is no singularity at t = 0 due to the running Newtonian coupling G(t) (vanishing at t = 0). Two temporal horizons at t _- \simeq t_P and t_+ \simeq t_H are found. For times below the Planck scale t < t_P, and above the Hubble time t > t_H, the components of the Kantowski-Sachs metric exhibit a key sign change, so the roles of the spatial z and temporal t coordinates are exchanged, and one recovers a repulsive inflationary de Sitter-like core around z = 0, and a Schwarzschild-like metric in the exterior region z > R_H = 2G_o M. The inclusion of a running cosmological constant \Lambda (t) follows. We proceed with the study of a dilaton-gravity (scalar-tensor theory) system within the context of Weyl's geometry that permits to single out the expression for the classical potential V (\phi ) = \kappa\phi^4, instead of being introduced by hand, and find a family of metric solutions which are conformally equivalent to the (Anti) de Sitter metric. To conclude, an ansatz for the truncated effective average action of ordinary dilaton-gravity in Riemannian geometry is introduced, and a RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is explored.

2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1379-1384 ◽  
Author(s):  
H. CULETU

A direct relation between the time-dependent Milne geometry and the Rindler spacetime is shown. Milne's metric corresponds to the region beyond Rindler's event horizon (in the wedge t ≻ |x|). We point out that inside a Schwarzschild black hole and near its horizon, the metric may be Milne's flat metric. It was found that the shear tensor associated to a congruence of fluid particles of the RHIC expanding fireball has the same structure as that corresponding to the anisotropic fluid from the black hole interior, even though the latter geometry is curved.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 178
Author(s):  
Kirill Bronnikov ◽  
Sergey Bolokhov ◽  
Milena Skvortsova

We discuss the properties of the previously constructed model of a Schwarzschild black hole interior where the singularity is replaced by a regular bounce, ultimately leading to a white hole. We assume that the black hole is young enough so that the Hawking radiation may be neglected. The model is semiclassical in nature and uses as a source of gravity the effective stress-energy tensor (SET) corresponding to vacuum polarization of quantum fields, and the minimum spherical radius is a few orders of magnitude larger than the Planck length, so that the effects of quantum gravity should still be negligible. We estimate the other quantum contributions to the effective SET, caused by a nontrivial topology of spatial sections and particle production from vacuum due to a nonstationary gravitational field and show that these contributions are negligibly small as compared to the SET due to vacuum polarization. The same is shown for such classical phenomena as accretion of different kinds of matter to the black hole and its further motion to the would-be singularity. Thus, in a clear sense, our model of a semiclassical bounce instead of a Schwarzschild singularity is stable under both quantum and classical perturbations.


2002 ◽  
Vol 17 (20) ◽  
pp. 2752-2752
Author(s):  
VITOR CARDOSO ◽  
JOSÉ P. S. LEMOS

We studied the quasi-normal modes (QNM) of electromagnetic and gravitational perturbations of a Schwarzschild black hole in an asymptotically anti-de Sitter (AdS) spacetime, extending previous works1,2 on the subject. Some of the electromagnetic modes do not oscillate, they only decay, since they have pure imaginary frequencies. The gravitational modes show peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasinormal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the usual one in scalar1 and electromagnetic perturbation in an AdS spacetime, but has a similar behavior to the Schwarzschild black hole3 in an asymptotically flat spacetime: the imaginary part of the frequency goes as [Formula: see text], where r+ is the horizon radius. We also investigated the small black hole limit showing that the imaginary part of the frequency goes as [Formula: see text]. These results are important to the AdS/CFT4 conjecture since according to it the QNMs describe the approach to equilibrium in the conformal field theory. For other geometries see5,6.


2013 ◽  
Vol 28 (09) ◽  
pp. 1350030
Author(s):  
SUNANDAN GANGOPADHYAY

We emphasize the importance of the Voros product in defining the noncommutative (NC) inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner–Nordström (RN) black holes show that the area law holds up to order [Formula: see text]. The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy E for these black holes is then obtained and a deviation from the standard identity E = 2STH is found at the order [Formula: see text]. This deviation leads to a nonvanishing Komar energy at the extremal point TH = 0 of these black holes. The Smarr formula is finally worked out for the NC Schwarzschild black hole. Similar features also exist for a de Sitter–Schwarzschild geometry.


2004 ◽  
Vol 13 (05) ◽  
pp. 885-898
Author(s):  
LI XIANG

Bekenstein argues that the horizon area of a black hole has a constant distance spectrum. We investigate the effects of such a discrete spectrum on the thermodynamics of a Schwarzchild black hole (SBH) and a Schwarzchild–de Sitter black hole (SdBH), in terms of the time-energy uncertainty relation and Stefan–Boltzman law. For the massive SBH, a negative and logarithmic correction to the Bekenstein–Hawking entropy is obtained, as well as other authors by using other methods. As to the minimal hole near the Planck scale, its entropy is no longer proportional to the horizon area, but is of order of the mass of the hole. This is similar to an excited stringy state. The vanishing heat capacity of such a minimal black hole implies that it may be a remnant as the ground state of the evaporating hole. The properties of a SdBH are similar to the SBH, except for an additional term of square area associated with the cosmological constant. In order to maintain the validity of the Bekenstein–Hawking formula, the cosmological constant is strongly limited by the size of the biggest black hole in the universe. A relation associated with the cosmological constant, Planck area and the Stefan–Boltzman constant is obtained. The cosmological constant is not only related to the vacuum energy, but is also related to the thermodynamics.


1996 ◽  
Vol 05 (05) ◽  
pp. 529-540 ◽  
Author(s):  
I.G. DYMNIKOVA

We analyze the globally regular solution of the Einstein equations describing a black hole whose singularity is replaced by the de Sitter core. The de Sitter—Schwarzschild black hole (SSBH) has two horizons. Inside of it there exists a particlelike structure hidden under the external horizon. The critical value of mass parameter M cr1 exists corresponding to the degenerate horizon. It represents the lower limit for a black-hole mass. Below M cr1 there is no black hole, and the de Sitter-Schwarzschild solution describes a recovered particlelike structure. We calculate the Hawking temperature of SSBH and show that specific heat is broken and changes its sign at the value of mass M cr 2>M cr 1 which means that a second-order phase transition occurs at that point. We show that the Hawking temperature drops to zero when a mass approaches the lower limit M cr1 .


2014 ◽  
Vol 29 (02) ◽  
pp. 1450010 ◽  
Author(s):  
S. MIGNEMI

We present a technique for obtaining exact spherically symmetric asymptotically de Sitter (dS) or anti-de Sitter (adS) black hole solutions of dilaton gravity with generic coupling to Maxwell field, starting from asymptotically flat solutions and adding a suitable dilaton potential to the action.


Sign in / Sign up

Export Citation Format

Share Document