Hybridized method of pseudopotential lattice Boltzmann and cubic-plus-association equation of state assesses thermodynamic characteristics of associating fluids

2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Mohammad Bagher Asadi ◽  
Sohrab Zendehboudi
Author(s):  
Abed Zadehgol

In this work, to rectify the equation of state (EOS) of a recently introduced constant speed entropic kinetic model (CSKM), a virtual force method is proposed. The CSKM, as shown in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)] and Zadehgol [Phys. Rev. E 91, 063311 (2015)], is an entropic kinetic model with unconventional entropies of Burg and Tsallis. The dependence of the pressure on the velocity, in the CSKM, was addressed and it was shown that it can be rectified by inserting rest particles into the model. This work shows that this dependence can also be removed by treating the pressure gradient as a pseudo force term, expanding the source term using the Fourier series, and applying the modified method of Khazaeli et al. [Phys. Rev. E 98, 053303 (2018)]. The proposed method can potentially be used to remove other pseudo-force error terms of the CSKM, e.g. the residual error terms which become significant at high Mach numbers, ensuring thermodynamic consistency of the entropic model, at the compressible flow regimes. The accuracy of the method is verified by simulating benchmark flows.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012118
Author(s):  
K V Khishchenko

Abstract An equation of state has been developed for rhodium in a wide range of changes in the specific volume and internal energy. The results of calculations of the thermodynamic characteristics of this metal are presented in comparison with the available experimental data at high pressures. This equation of state can be used in the numerical simulation of hydrodynamic processes under intense impulse influences on matter.


Sign in / Sign up

Export Citation Format

Share Document