Variational methods for the solution of the Ornstein-Zernicke equation in inhomogeneous systems

2003 ◽  
Vol 67 (1) ◽  
Author(s):  
R. Paul ◽  
S. J. Paddison
Author(s):  
Michael P. Allen ◽  
Dominic J. Tildesley

This chapter contains the essential statistical mechanics required to understand the inner workings of, and interpretation of results from, computer simulations. The microcanonical, canonical, isothermal–isobaric, semigrand and grand canonical ensembles are defined. Thermodynamic, structural, and dynamical properties of simple and complex liquids are related to appropriate functions of molecular positions and velocities. A number of important thermodynamic properties are defined in terms of fluctuations in these ensembles. The effect of the inclusion of hard constraints in the underlying potential model on the calculated properties is considered, and the addition of long-range and quantum corrections to classical simulations is presented. The extension of statistical mechanics to describe inhomogeneous systems such as the planar gas–liquid interface, fluid membranes, and liquid crystals, and its application in the simulation of these systems, are discussed.


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2021 ◽  
Author(s):  
Lucas Pinheiro Cinelli ◽  
Matheus Araújo Marins ◽  
Eduardo Antônio Barros da Silva ◽  
Sérgio Lima Netto

2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


1988 ◽  
Vol 92 (11) ◽  
pp. 3202-3216 ◽  
Author(s):  
David W. Schwenke ◽  
Kenneth Haug ◽  
Meishan Zhao ◽  
Donald G. Truhlar ◽  
Yan Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document