Stability of the circular Couette flow of a ferrofluid in an axial magnetic field: Influence of polydispersity

2009 ◽  
Vol 79 (3) ◽  
Author(s):  
A. Leschhorn ◽  
M. Lücke ◽  
C. Hoffmann ◽  
S. Altmeyer

The MHD stability problem for dissipative Couette flow in a narrow gap between corotating, conducting cylinders with an axial magnetic field is solved exactly. Results are presented for an arbitrary magnetic field; in particular, previous results on the zero and infinite magnetic field limits are verified.


2004 ◽  
Vol 02 (02) ◽  
pp. 145-159 ◽  
Author(s):  
ISOM H. HERRON

The stability of viscous flow between rotating cylinders in the presence of a constant axial magnetic field is considered. The boundary conditions for general conductivities are examined. It is proved that the Principle of Exchange of Stabilities holds at zero magnetic Prandtl number, for all Chandrasekhar numbers, when the cylinders rotate in the same direction, the circulation decreases outwards, and the cylinders have insulating walls. The result holds for both the finite gap and the narrow gap approximation.


2012 ◽  
Vol 516-517 ◽  
pp. 1791-1797 ◽  
Author(s):  
Mohmmad Al Dweikat ◽  
Yu Long Huang ◽  
Xiao Lin Shen ◽  
Wei Dong Liu

DC Vacuum Circuit Breakers based arc control has been a major topic in the last few decades. Understanding vacuum arc (VA) gives the ability to improve vacuum circuit breakers capacity. In this paper, the interaction of a DC vacuum arc with a combined Axial-Radial magnetic field was investigated. The proposed system contains an external coil to produce axial magnetic field (AMF) across the vacuum chamber. The vacuum interrupter (VI) contacts were assumed to be untreated radial magnetic field (RMF) contacts. For this purpose, Finite Element Method (FEM) based Multiphysics simulation of the immerging magnetic field influence on the VA is presented. The simulation shown the ability of the presented system to deflect high DC vacuum arc, also reveals that the vacuum arc interruption capability increases with the rise of the axial component of the magnetic field. Simulation results shown that this method can be applied to improve the interruption capability of the VI.


2015 ◽  
Vol 8 (2) ◽  
pp. 255-264
Author(s):  
Sofiane ABERKANE ◽  
IHDENE malika ◽  
mouderes mourad ◽  
A. Ghezal ◽  
◽  
...  

1998 ◽  
Vol 366 ◽  
pp. 135-158 ◽  
Author(s):  
CHA'O-KUANG CHEN ◽  
MIN HSING CHANG

A linear stability analysis has been implemented for hydromagnetic dissipative Couette flow, a viscous electrically conducting fluid between rotating concentric cylinders in the presence of a uniform axial magnetic field. The small-gap equations with respect to non-axisymmetric disturbances are derived and solved by a direct numerical procedure. Both types of boundary conditions, conducting and non-conducting walls, are considered. A parametric study covering wide ranges of μ, the ratio of angular velocity of the outer cylinder to that of inner cylinder, and Q, the Hartmann number which represents the strength of axial magnetic field, is conducted. Results show that the stability characteristics depend on the conductivity of the cylinders. For the case of non-conducting walls, it is found that the critical disturbance is a non-axisymmetric mode as the value of μ is sufficiently negative and the domain of Q where non-axisymmetric instability modes prevail is limited. Similar results are obtained for conducting walls at low Hartmann number. In addition, the transition of the onset of instability from non-axisymmetric modes to axisymmetric modes for the case μ=−1 with increasing strength of magnetic field are discussed in detail. For high values of the Hartmann number, the critical disturbance is always the axisymmetric stationary mode for non-conducting walls but not for conducting walls. For −1[les ]μ<1, it is demonstrated that non-axisymmetric instability modes prevail in a wide range of Q for conducting walls and axisymmetric oscillatory modes may, in fact, become more critical than both of the non-axisymmetric and axisymmetric stationary modes at higher values of the Hartmann number.


2021 ◽  
pp. 57-60
Author(s):  
A.K. Marchenko ◽  
O.V. Byrka ◽  
V.A. Makhlai ◽  
S.S. Herashenko ◽  
D.G. Solyakov ◽  
...  

The paper is devoted to experimental measurements and analysis of parameters of the plasma streams generated by magnetoplasma compressor (MPC) upgraded with an external axial magnetic field. Influence of the external axial magnetic field of 0.24 T on helium plasma streams (P=2 Torr) has been studied. The measurements of average electron density distributions were performedboth with and without an external axial B-field. Distributions of plasma electron density Ne (L) were measured with spectroscopy in the plasma stream and in the compression zone using Stark broadening of He I and He II spectral lines. Plasma-surface interaction processes were also analyzed.


Sign in / Sign up

Export Citation Format

Share Document