scholarly journals Minimal Integer Automaton behind Crystal Plasticity

2011 ◽  
Vol 106 (17) ◽  
Author(s):  
Oğuz Umut Salman ◽  
Lev Truskinovsky
2018 ◽  
Author(s):  
Motoki Sakaguchi ◽  
Ryota Komamura ◽  
Mana Higaki ◽  
Xiaosheng Chen ◽  
Hirotsugu Inoue

Geology ◽  
2000 ◽  
Vol 28 (11) ◽  
pp. 1003-1006 ◽  
Author(s):  
David J. Prior ◽  
John Wheeler ◽  
Frank E. Brenker ◽  
Ben Harte ◽  
Mike Matthews
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 691
Author(s):  
Francisco-José Gallardo-Basile ◽  
Yannick Naunheim ◽  
Franz Roters ◽  
Martin Diehl

Lath martensite is a complex hierarchical compound structure that forms during rapid cooling of carbon steels from the austenitic phase. At the smallest, i.e., ‘single crystal’ scale, individual, elongated domains, form the elemental microstructural building blocks: the name-giving laths. Several laths of nearly identical crystallographic orientation are grouped together to blocks, in which–depending on the exact material characteristics–clearly distinguishable subblocks might be observed. Several blocks with the same habit plane together form a packet of which typically three to four together finally make up the former parent austenitic grain. Here, a fully parametrized approach is presented which converts an austenitic polycrystal representation into martensitic microstructures incorporating all these details. Two-dimensional (2D) and three-dimensional (3D) Representative Volume Elements (RVEs) are generated based on prior austenite microstructure reconstructed from a 2D experimental martensitic microstructure. The RVEs are used for high-resolution crystal plasticity simulations with a fast spectral method-based solver and a phenomenological constitutive description. The comparison of the results obtained from the 2D experimental microstructure and the 2D RVEs reveals a high quantitative agreement. The stress and strain distributions and their characteristics change significantly if 3D microstructures are used. Further simulations are conducted to systematically investigate the influence of microstructural parameters, such as lath aspect ratio, lath volume, subblock thickness, orientation scatter, and prior austenitic grain shape on the global and local mechanical behavior. These microstructural features happen to change the local mechanical behavior, whereas the average stress–strain response is not significantly altered. Correlations between the microstructure and the plastic behavior are established.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 503
Author(s):  
Yuheng Zhang ◽  
Zhiqing Hu ◽  
Liming Guo

In order to study a new thread rolling forming process from a microscopic perspective, a polycrystalline model was established, based on the crystal plasticity finite element method (CPFEM) and Voronoi polyhedron theory. The fluidity of metals was studied to explain the reason for the concave center. The simulation results show that the strain curve of the representative element can more truly reflect the deformation behavior of the material. The grain orientations after deformation are distributed near the initial orientation. The evolution of each slip system is determined by the initial grain orientations and grain locations. The pole figures obtained from the experiment show high consistency with the pole figures obtained by simulation, which verifies the accuracy of the texture prediction by CPFEM. The experimental results show that thread rolling is more uniform in deformation than ordinary rolling.


Sign in / Sign up

Export Citation Format

Share Document