scholarly journals Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event S190521g

2020 ◽  
Vol 124 (25) ◽  
Author(s):  
M. J. Graham ◽  
K. E. S. Ford ◽  
B. McKernan ◽  
N. P. Ross ◽  
D. Stern ◽  
...  
2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Adrian Ka-Wai Chung ◽  
Mairi Sakellariadou

AbstractWe present a method to constrain the temperature of astrophysical black holes through detecting the inspiral phase of binary black hole coalescences. At sufficient separation, inspiraling black holes can be regarded as isolated objects, hence their temperature can still be defined. Due to their intrinsic radiation, inspiraling black holes lose part of their masses during the inspiral phase. As a result, coalescence speeds up, introducing a correction to the orbital phase. We show that this dephasing may allow us to constrain the temperature of inspiraling black holes through gravitational-wave detection. Using the binary black-hole coalescences of the first two observing runs of the Advanced LIGO and Virgo detectors, we constrain the temperature of parental black holes to be less than about $$ 10^9 $$ 10 9  K. Such a constraint corresponds to luminosity of about $$ 10^{-16} M_{\odot }~\mathrm{s}^{-1} $$ 10 - 16 M ⊙ s - 1 for a black hole of $$ 20 M_{\odot } $$ 20 M ⊙ , which is about 20 orders of magnitude below the peak luminosity of the corresponding gravitational-wave event, indicating no evidence for strong quantum-gravity effects through the detection of the inspiral phase.


2019 ◽  
Vol 492 (2) ◽  
pp. 1731-1754 ◽  
Author(s):  
A Grado ◽  
E Cappellaro ◽  
S Covino ◽  
F Getman ◽  
G Greco ◽  
...  

ABSTRACT We report on the search for the optical counterpart of the gravitational event GW170814, which was carried out with the VLT Survey Telescope (VST) by the GRAvitational Wave Inaf TeAm. Observations started 17.5 h after the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo alert and we covered an area of 99 deg2 that encloses $\sim 77{{\ \rm per\ cent}}$ and $\sim 59{{\ \rm per\ cent}}$ of the initial and refined localization probability regions, respectively. A total of six epochs were secured over nearly two months. The survey reached an average limiting magnitude of 22 AB mag in the r band. After assuming the model described in Perna, Lazzati & Farr, that derives as possible optical counterpart of a BBH (binary black hole) event a transient source declining in about one day, we have computed a survey efficiency of about $5{{\ \rm per\ cent}}$. This paper describes the VST observational strategy and the results obtained by our analysis pipelines developed to search for optical transients in multi-epoch images. We report the catalogue of the candidates with possible identifications based on light-curve fitting. We have identified two dozens of SNe, nine AGNs, and one QSO. Nineteen transients characterized by a single detection were not classified. We have restricted our analysis only to the candidates that fall into the refined localization map. None out of 39 left candidates could be positively associated with GW170814. This result implies that the possible emission of optical radiation from a BBH merger had to be fainter than r ∼ 22 (Loptical ∼ 1.4 × 1042 erg s−1) on a time interval ranging from a few hours up to two months after the gravitational wave event.


2019 ◽  
Vol 621 ◽  
pp. A81
Author(s):  
A. Melandri ◽  
A. Rossi ◽  
S. Benetti ◽  
V. D’Elia ◽  
S. Piranomonte ◽  
...  

Aims. The unusual transient ATLAS17aeu was serendipitously detected within the sky localisation of the gravitational wave trigger GW 170104. The importance of a possible association with gravitational waves coming from a binary black hole merger led to an extensive follow-up campaign, with the aim of assessing a possible connection with GW 170104. Methods. With several telescopes, we carried out both photometric and spectroscopic observations of ATLAS17aeu, for several epochs, between ∼3 and ∼230 days after the first detection. Results. We studied in detail the temporal and spectroscopic properties of ATLAS17aeu and its host galaxy. Although at low significance and not conclusive, we found similarities to the spectral features of a broad-line supernova superposed onto an otherwise typical long-GRB afterglow. Based on analysis of the optical light curve, spectrum, and host galaxy spectral energy distribution, we conclude that the redshift of the source is probably z ≃ 0.5 ± 0.2. Conclusions. While the redshift range we have determined is marginally compatible with that of the gravitational wave event, the presence of a supernova component and the consistency of this transient with the Ep–Eiso correlation support the conclusion that ATLAS17aeu was associated with the long gamma-ray burst GRB 170105A. This rules out the association of the GRB 170105A/ATLAS17aeu transient with the gravitational wave event GW 170104, which was due to a binary black hole merger.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
T. Mishra ◽  
B. O’Brien ◽  
V. Gayathri ◽  
M. Szczepańczyk ◽  
S. Bhaumik ◽  
...  

2016 ◽  
Vol 12 (S324) ◽  
pp. 287-290
Author(s):  
Barbara De Lotto ◽  
Stefano Ansoldi ◽  
Angelo Antonelli ◽  
Alessio Berti ◽  
Alessandro Carosi ◽  
...  

AbstractThe year 2015 witnessed the first direct observations of a transient gravitational-wave (GW) signal from binary black hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) Collaboration with the Virgo Collaboration. The MAGIC two 17m diameter Cherenkov telescopes system joined since 2014 the vast collaboration of electromagnetic facilities for follow-up of gravitational wave alerts. During the 2015 LIGO-Virgo science run we set up the procedure for GW alerts follow-up and took data following the last GW alert. MAGIC results on the data analysis and prospects for the forthcoming run are presented.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Chayan Chatterjee ◽  
Linqing Wen ◽  
Foivos Diakogiannis ◽  
Kevin Vinsen

2018 ◽  
Vol 855 (1) ◽  
pp. 34 ◽  
Author(s):  
László Gondán ◽  
Bence Kocsis ◽  
Péter Raffai ◽  
Zsolt Frei

2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.


Sign in / Sign up

Export Citation Format

Share Document