scholarly journals Massive Conformal Symmetry and Integrability for Feynman Integrals

2020 ◽  
Vol 125 (9) ◽  
Author(s):  
Florian Loebbert ◽  
Julian Miczajka ◽  
Dennis Müller ◽  
Hagen Münkler
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Loebbert ◽  
Julian Miczajka ◽  
Dennis Müller ◽  
Hagen Münkler

We extend the study of the recently discovered Yangian symmetry of massive Feynman integrals and its relation to massive momentum space conformal symmetry. After proving the symmetry statements in detail at one and two loop orders, we employ the conformal and Yangian constraints to bootstrap various one-loop examples of massive Feynman integrals. In particular, we explore the interplay between Yangian symmetry and hypergeometric expressions of the considered integrals. Based on these examples we conjecture single series representations for all dual conformal one-loop integrals in D spacetime dimensions with generic massive propagators.


2020 ◽  
Vol 31 (10) ◽  
pp. 2050146
Author(s):  
Michelangelo Preti

We present Star–Triangle Relations (STRs), a Mathematica® package designed to solve Feynman diagrams by means of the method of uniqueness in any Euclidean space-time dimension. The method of uniqueness is a powerful technique to solve multi-loop Feynman integrals in theories with conformal symmetry imposing some relations between the powers of propagators and the space-time dimension. In our algorithm, we include both identities for scalar and Yukawa type integrals. The package provides a graphical environment in which it is possible to draw the desired diagram with the mouse input and a set of tools to modify and compute it. Throughout the use of a graphic interface, the package should be easily accessible to users with little or no previous experience on diagrams computation. This manual includes some pedagogical examples of computation of Feynman graphs as the scalar two-loop kite master integral and a fermionic diagram appearing in the computation of the spectrum of the [Formula: see text]-deformed [Formula: see text] SYM in the double scaling limit.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Florian Loebbert ◽  
Julian Miczajka

Abstract Recently, infinite families of massive Feynman integrals were found to feature an unexpected Yangian symmetry. In the massless case, similar integrability properties are understood via the interpretation of individual Feynman integrals as correlators in the massless fishnet theory introduced by Gürdoğan and Kazakov. Here we seek for an analogous interpretation of the integrability of massive Feynman integrals. We contrast two approaches to define simple massive quantum field theories in four dimensions. First, we discuss spontaneous symmetry breaking in the massless bi-scalar fishnet theory. We then propose an alternative route to a massive fishnet theory by taking a double-scaling limit of $$ \mathcal{N} $$ N = 4 SYM theory on the Coulomb branch. Both approaches lead to a massive extension of the massless fishnet theory, differing in how masses enter into the propagators. In the latter theory, planar off-shell amplitudes are in one-to-one correspondence with precisely those massive Feynman integrals that were shown to be invariant under the Yangian. This suggests a re-investigation of Coulomb branch $$ \mathcal{N} $$ N = 4 SYM theory with regard to integrability. Finally, we demonstrate that in the case of spontaneous symmetry breaking, the original conformal symmetry leads to soft theorems for scattering amplitudes in the broken phase.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Luis F. Alday ◽  
Xinan Zhou

Abstract We demonstrate the simplicity of AdS5× S5 IIB supergravity at one loop level, by studying non-planar holographic four-point correlators in Mellin space. We develop a systematic algorithm for constructing one-loop Mellin amplitudes from the tree-level data, and obtain a simple closed form answer for the $$ \left\langle {\mathcal{O}}_2^{SG}{\mathcal{O}}_2^{SG}{\mathcal{O}}_p^{SG}{\mathcal{O}}_p^{SG}\right\rangle $$ O 2 SG O 2 SG O p SG O p SG correlators. The structure of this expression is remarkably simple, containing only simultaneous poles in the Mellin variables. We also study the flat space limit of the Mellin amplitudes, which reproduces precisely the IIB supergravity one-loop amplitude in ten dimensions. Our results provide nontrivial evidence for the persistence of the hidden conformal symmetry at one loop.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luke Corcoran ◽  
Florian Loebbert ◽  
Julian Miczajka ◽  
Matthias Staudacher

Abstract We extend the recently developed Yangian bootstrap for Feynman integrals to Minkowski space, focusing on the case of the one-loop box integral. The space of Yangian invariants is spanned by the Bloch-Wigner function and its discontinuities. Using only input from symmetries, we constrain the functional form of the box integral in all 64 kinematic regions up to twelve (out of a priori 256) undetermined constants. These need to be fixed by other means. We do this explicitly, employing two alternative methods. This results in a novel compact formula for the box integral valid in all kinematic regions of Minkowski space.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Johanna Erdmenger ◽  
Pascal Fries ◽  
Ignacio A. Reyes ◽  
Christian P. Simon

Abstract Modular flow is a symmetry of the algebra of observables associated to space-time regions. Being closely related to entanglement, it has played a key role in recent connections between information theory, QFT and gravity. However, little is known about its action beyond highly symmetric cases. The key idea of this work is to introduce a new formula for modular flows for free chiral fermions in 1 + 1 dimensions, working directly from the resolvent, a standard technique in complex analysis. We present novel results — not fixed by conformal symmetry — for disjoint regions on the plane, cylinder and torus. Depending on temperature and boundary conditions, these display different behaviour ranging from purely local to non-local in relation to the mixing of operators at spacelike separation. We find the modular two-point function, whose analytic structure is in precise agreement with the KMS condition that governs modular evolution. Our ready-to-use formulae may provide new ingredients to explore the connection between spacetime and entanglement.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
D. Chicherin ◽  
V. Sotnikov

Abstract We complete the analytic calculation of the full set of two-loop Feynman integrals required for computation of massless five-particle scattering amplitudes. We employ the method of canonical differential equations to construct a minimal basis set of transcendental functions, pentagon functions, which is sufficient to express all planar and nonplanar massless five-point two-loop Feynman integrals in the whole physical phase space. We find analytic expressions for pentagon functions which are manifestly free of unphysical branch cuts. We present a public library for numerical evaluation of pentagon functions suitable for immediate phenomenological applications.


Sign in / Sign up

Export Citation Format

Share Document