scholarly journals Beating the Lyth Bound by Parametric Resonance during Inflation

2021 ◽  
Vol 127 (25) ◽  
Author(s):  
Yi-Fu Cai ◽  
Jie Jiang ◽  
Misao Sasaki ◽  
Valeri Vardanyan ◽  
Zihan Zhou
Keyword(s):  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Mustafa A. Amin ◽  
Andrew J. Long ◽  
Zong-Gang Mou ◽  
Paul M. Saffin

Abstract We investigate the production of photons from coherently oscillating, spatially localized clumps of axionic fields (oscillons and axion stars) in the presence of external electromagnetic fields. We delineate different qualitative behaviour of the photon luminosity in terms of an effective dimensionless coupling parameter constructed out of the axion-photon coupling, and field amplitude, oscillation frequency and radius of the axion star. For small values of this dimensionless coupling, we provide a general analytic formula for the dipole radiation field and the photon luminosity per solid angle, including a strong dependence on the radius of the configuration. For moderate to large coupling, we report on a non-monotonic behavior of the luminosity with the coupling strength in the presence of external magnetic fields. After an initial rise in luminosity with the coupling strength, we see a suppression (by an order of magnitude or more compared to the dipole radiation approximation) at moderately large coupling. At sufficiently large coupling, we find a transition to a regime of exponential growth of the luminosity due to parametric resonance. We carry out 3+1 dimensional lattice simulations of axion electrodynamics, at small and large coupling, including non-perturbative effects of parametric resonance as well as backreaction effects when necessary. We also discuss medium (plasma) effects that lead to resonant axion to photon conversion, relevance of the coherence of the soliton, and implications of our results in astrophysical and cosmological settings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ata Keşkekler ◽  
Oriel Shoshani ◽  
Martin Lee ◽  
Herre S. J. van der Zant ◽  
Peter G. Steeneken ◽  
...  

AbstractMechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.


2017 ◽  
Vol 24 (19) ◽  
pp. 4419-4432 ◽  
Author(s):  
Airong Liu ◽  
Zhicheng Yang ◽  
Hanwen Lu ◽  
Jiyang Fu ◽  
Yong-Lin Pi

When an arch is subjected to a periodic load, it may lose in-plane stability dynamically owing to parametric resonance. Previous investigations have been concentrated on in-plane dynamic buckling of pin-ended shallow arches. However, in engineering practice, fixed arches with different rise-to-span ratios are often encountered. Little research on in-plane dynamic instability of deep fixed arches has been reported in the literature. This paper is concerned with experimental and analytical investigations for in-plane dynamic instability of fixed circular arches with rise-to-span ratios 1/8–1/2 under a central periodic load owing to parametric resonance. Experiments are carried out to determine the in-plane frequency and damping ratio of arches, to investigate critical regions of frequencies and amplitudes of the periodic load for in-plane dynamic instability of arches, and to explore effects of the rise-to-span ratio and additional weights on dynamic instability. The analytical method for determining the region of excitation frequencies and amplitudes of the periodic load causing in-plane instability of the arch is established using the Hamilton’s principle by accounting for effects of additional concentrated weights. Comparisons of analytical solutions with test results show that they agree with each other quite well. These results show that the rise-to-span ratio significantly influences the bandwidth of regions of critical excitation frequencies for in-plane dynamic instability of arches. The critical frequencies of the periodic load and their bandwidth increase with a decrease of the rise–span ratio of the arch, whereas the corresponding amplitude of the periodic load decreases at the same time. It is also found that the central concentrated weight influences in-plane dynamic instability of arches significantly. As the weight increases, the critical frequencies of excitation and their bandwidth for in-plane dynamic instability of arches decreases, whereas the corresponding amplitude of excitation increases.


Sign in / Sign up

Export Citation Format

Share Document