scholarly journals Three-Dimensional Disordered Conductors in a Strong Magnetic Field: Surface States and Quantum Hall Plateaus

1995 ◽  
Vol 75 (24) ◽  
pp. 4496-4499 ◽  
Author(s):  
J. T. Chalker ◽  
A. Dohmen
Author(s):  
G. Tomita ◽  
M. Kaneda ◽  
T. Tagawa ◽  
H. Ozoe

Three-dimensional numerical computations were carried out for the natural convection of air in a horizontal cylindrical enclosure in a magnetic field, which is modeled for a bore space of a horizontal superconducting magnet. The enclosure was cooled from the circumferential sidewall at the constant heat flux and vertical end walls were thermally insulated. A strong magnetic field was considered by a one-turn electric coil with the concentric and twice diameter of the cylinder. Without a magnetic field, natural convection occurs along the circumferential sidewall. When a magnetic field was applied, magnetizing force induced the additional convection, that is, the cooled air at the circumferential wall was attracted to the location of a coil. Consequently, the temperature around the coil decreased extensively.


1991 ◽  
Vol 05 (10) ◽  
pp. 1725-1729
Author(s):  
F. C. Zhang ◽  
M. Ma

Ideal anyons with statistics ν in a strong magnetic field are studied by means of a similarity transformation. The ground state exhibits "integer" quantum Hall effect at filling factor 1/ν with quasiparticle excitations of charge q/ν and statistics -1/ν. Certain electron FQH states can be considered as realization of this, for example, the sequence 2/5, 3/7, … hierarchy of the 1/3 state. This may explain the observed quasiparticle-quasihole asymmetry in the fractional quantum Hall hierarchy.


2020 ◽  
Vol 27 (6) ◽  
pp. 063701 ◽  
Author(s):  
Mangilal Choudhary ◽  
Roman Bergert ◽  
Slobodan Mitic ◽  
Markus H. Thoma

2015 ◽  
Vol 788 ◽  
pp. 129-146 ◽  
Author(s):  
Jānis Priede ◽  
Thomas Arlt ◽  
Leo Bühler

This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios $c\ll 1$, an extremely strong magnetic field with Hartmann number $\mathit{Ha}\sim c^{-4}$ is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios $c=1$, 0.1 and 0.01 and Hartmann numbers up to $10^{4}$. As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness ${\it\delta}\sim \mathit{Ha}^{-1/2}$. This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as $\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$ and $k_{c}\sim 0.5\mathit{Ha}^{1/2}$. The respective critical Reynolds number based on the total volume flux in a square duct with $c\ll 1$ is $\overline{\mathit{Re}}_{c}\approx 520$. Although this value is somewhat larger than $\overline{\mathit{Re}}_{c}\approx 313$ found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow.


2020 ◽  
Author(s):  
Shinichi Nishihaya ◽  
Masaki Uchida ◽  
Yusuke Nakazawa ◽  
Markus Kriener ◽  
Yasujiro Taguchi ◽  
...  

Abstract Topological semimetals hosting bulk Weyl points and surface Fermi-arc states are expected to realize unconventional Weyl orbits, which interconnect two surface Fermi-arc states on opposite sample surfaces under magnetic fields. While the presence of Weyl orbits has been proposed to play a vital role in recent observation of quantum Hall effect even in three-dimensional topological semimetals, actual spatial distribution of the quantized surface transport has been experimentally elusive. Here, we demonstrate intrinsic coupling between two spatially-separated surface states in the Weyl orbits by measuring a dual-gate device of a Dirac semimetal film. Independent scans of top- and back-gate voltages reveal concomitant modulation of doubly-degenerate quantum Hall states, which is not possible in conventional surface orbits as in topological insulators. Our results evidencing the unique spatial distribution of Weyl orbits provide new opportunities for controlling the novel quantized transport by various means such as external fields and interface engineering.


Sign in / Sign up

Export Citation Format

Share Document