scholarly journals The Role of Plants in the Effects of Global Change on Nutrient Availability and Stoichiometry in the Plant-Soil System

2012 ◽  
Vol 160 (4) ◽  
pp. 1741-1761 ◽  
Author(s):  
Jordi Sardans ◽  
Josep Peñuelas
Ecology ◽  
2012 ◽  
Author(s):  
Franciska T. De Vries ◽  
Richard D. Bardgett

The study of soil ecology has a long tradition. Most of this interest, until relatively recently, has been from an agricultural perspective, but now it is widely accepted that soil ecology is central to the study of terrestrial ecology. Early research in soil ecology was largely descriptive, detailing the abundance of diversity of organisms in soils of different habitats. However, interest in functional soil ecology started in the 1980s with studies of trophic interactions in soil and their importance for nutrient cycles and decomposition. Now, the topic has blossomed, with the help of new technologies that allow the study of soil organisms and their activities in situ, and there is currently widespread recognition that soil ecology is fundamental to our understanding of the functioning of terrestrial ecosystems and their response to global change. Today, the field of soil ecology is dominated by discussions on the use of new molecular tools that enable ecologists to understand what regulates patterns of diversity in soil, the functional role of soil biodiversity and plant-soil interactions, especially those that occur at the root-soil interface, and the role of soil biological communities in regulating ecosystem responses to global change, including the global carbon cycle under climate change. Many challenges still remain in soil ecology, and perhaps the most significant is the need for a stronger theoretical basis for the subject; almost all studies in this area have been carried out from an empirical perspective, and modeling approaches are still in their infancy. As a consequence, our ability to make predictions about the role of soil biological interactions and feedbacks in regulating terrestrial ecosystem processes and their response to global change remains limited.


Author(s):  
Anika Lehmann ◽  
Eva F. Leifheit ◽  
Linshan Feng ◽  
Joana Bergmann ◽  
Anja Wulf ◽  
...  

Abstract Microplastics are increasingly recognized as a factor of global change. By altering soil inherent properties and processes, ripple-on effects on plants and their symbionts can be expected. Additionally, interactions with other factors of global change, such as drought, can influence the effect of microplastics. We designed a greenhouse study to examine effects of polyester microfibers, arbuscular mycorrhizal (AM) fungi and drought on plant, microbial and soil responses. We found that polyester microfibers increased the aboveground biomass of Allium cepa under well-watered and drought conditions, but under drought conditions the AM fungal-only treatment reached the highest biomass. Colonization with AM fungi increased under microfiber contamination, however, plant biomass did not increase when both AM fungi and fibers were present. The mean weight diameter of soil aggregates increased with AM fungal inoculation overall but decreased when the system was contaminated with microfibers or drought stressed. Our study adds additional support to the mounting evidence that microplastic fibers in soil can affect the plant-soil system by promoting plant growth, and favoring key root symbionts, AM fungi. Although soil aggregation is usually positively influenced by plant roots and AM fungi, and microplastic promotes both, our results show that plastic still had a negative effect on soil aggregates. Even though there are concerns that microplastic might interact with other factors of global change, our study revealed no such effect for drought.


2021 ◽  
Author(s):  
Matthias C. Rillig ◽  
Anika Lehmann ◽  
James A. Orr ◽  
Walter R. Waldman

2020 ◽  
Author(s):  
Sebastian Doetterl

<p>Good time for soil scientists, bad time for soils? Join me at my Soil System Sciences - OECS award lecture where I will highlight how Global Change affects soils across ecosystems and what this means for future plant-soil inter­actions and biogeochemical cycles in a warming, crowded world out of balance.</p><p>Global Change from the Arctic to the Tropics has accelerated drastically in recent decades, subsequently effecting ecosystems everywhere. Soils and biogeochemical cycling within are no exception. For example, how carbon and nutrients are stabilized in and released from soil is highly affected by changing land use and climate. Despite these changes, soil in earth system models is not represented mechanistically, but rather given a mostly budgetary “black box” function. No methodological framework is available that accounts for the combined effects of climate, geochemistry and disturbance on soil dynamics at larger scales. In addition, most of our process understanding of biogeochemical cycling in soils is derived from data-rich temperate regions. This data has limited applicability in low latitudinal (tropics) or high latitudinal (boreal/subpolar) climate zones, where soils have different properties and drastically different developmental histories.</p><p>In my talk I will illustrate with a few examples how the gaps in our understanding of soil processes across climate zones and dismissing lateral soil fluxes leads to large uncertainties in predicting future trajectories of the global carbon cycle. I will highlight how the interactions of weathering and disturbance can influence and dominate biogeochemical cycles and microbial processes in soils. I will also discuss some directions where geochemical proxies that are available at the global scale can be useful to model the spatial and temporal patterns of soil carbon storage and turnover.</p>


2020 ◽  
Author(s):  
Masahiro Ryo ◽  
Matthias Rillig

<p>Global change is not only about climate change. Several changes in the Earth System occur concurrently and sequentially, and still, novel factors are being identified as emerging problems such as microplastic pollutants. Global change is diverse; nonetheless, little is known about the role of multiple global change co-occurrences. Can we safely anticipate that the effects of multiple global change factors are independent of each other? Or, should we be concerned about the potential of their synergistic interaction, where the joint effect of multiple factors can be larger than the addition of their single effects?</p><p>Our talk focuses on ‘the <em>diversity</em> of global change factors’—How the diversity of global change factors can increase, and how the diversity of global change can affect environmental systems in the context of tipping points. We also show empirical evidence that an increasing number of global change factors can cause abrupt shifts in a soil system (cf. Rillig <em>et al.</em> 2019 in <em>Science</em>). We emphasize the urgent need to investigate the expected roles of an increasing diversity of global change factors as an emerging threat to nature and society.</p>


2018 ◽  
Vol 374 (1763) ◽  
pp. 20170405 ◽  
Author(s):  
Heather M. Kharouba ◽  
Jayme M. M. Lewthwaite ◽  
Rob Guralnick ◽  
Jeremy T. Kerr ◽  
Mark Vellend

Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species’ ecological and evolutionary responses to rapid, widespread global changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the anthropocene’.


Sign in / Sign up

Export Citation Format

Share Document