scholarly journals A Gas-and-Brake Mechanism of bHLH Proteins Modulates Shade Avoidance

2020 ◽  
Vol 184 (4) ◽  
pp. 2137-2153
Author(s):  
Sara Buti ◽  
Chrysoula K. Pantazopoulou ◽  
Kasper van Gelderen ◽  
Valérie Hoogers ◽  
Emilie Reinen ◽  
...  
2007 ◽  
Vol 26 (22) ◽  
pp. 4756-4767 ◽  
Author(s):  
Irma Roig-Villanova ◽  
Jordi Bou-Torrent ◽  
Anahit Galstyan ◽  
Lorenzo Carretero-Paulet ◽  
Sergi Portolés ◽  
...  

2013 ◽  
Vol 75 (6) ◽  
pp. 989-1002 ◽  
Author(s):  
Nicolás Cifuentes-Esquivel ◽  
Jordi Bou-Torrent ◽  
Anahit Galstyan ◽  
Marçal Gallemí ◽  
Giovanna Sessa ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 176
Author(s):  
Huanxuan Chen ◽  
Xinxin Zhao ◽  
Yingchun Han ◽  
Fangfang Xing ◽  
Lu Feng ◽  
...  

Modification of the cotton canopy results in shade avoidance and competition for light, which shows that density and spatial arrangement of cotton have a great impact on light interception. This experiment was conducted in 2018 and 2019 in the experimental field at the Institute of Cotton Research of Chinese Academy of Agricultural Science in Anyang city, Henan Province, China. Six plant densities of cotton variety SCRC28 were used to assess spatial competition for light in cotton populations during the whole growing period. Light interception data were collected and analyzed according to the spatial grid method and the extension of Simpson’s 3/8 rule. The results showed that at the bottom of the canopy, greater light interception was observed at high densities than at low densities, while in the external part of the layer of the canopy in the horizontal direction, low light interception was recorded at low densities. Leaf area, aboveground biomass and plant height were obviously correlated with light interception, and the cotton population with a higher density (8.7 plants m−2) performed best at the light interception competition, and with the highest yield. The results will provide guidance on light management through the optimization of the structure of the canopy to provide more solar radiation and a significant basis by which to improve the management of light and canopy architecture.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 637
Author(s):  
Paul Kusuma ◽  
Boston Swan ◽  
Bruce Bugbee

The photon flux in the green wavelength region is relatively enriched in shade and the photon flux in the blue region is selectively filtered. In sole source lighting environments, increasing the fraction of blue typically decreases stem elongation and leaf expansion, and smaller leaves reduce photon capture and yield. Photons in the green region reverse these blue reductions through the photoreceptor cryptochrome in Arabidopsis thaliana, but studies in other species have not consistently shown the benefits of photons in the green region on leaf expansion and growth. Spectral effects can interact with total photon flux. Here, we report the effect of the fraction of photons in the blue (10 to 30%) and green (0 to 50%) regions at photosynthetic photon flux densities of 200 and 500 µmol m−2 s−1 in lettuce, cucumber and tomato. As expected, increasing the fraction of photons in the blue region consistently decreased leaf area and dry mass. By contrast, large changes in the fraction of photons in the green region had minimal effects on leaf area and dry mass in lettuce and cucumber. Photons in the green region were more potent at a lower fraction of photons in the blue region. Photons in the green region increased stem and petiole length in cucumber and tomato, which is a classic shade avoidance response. These results suggest that high-light crop species might respond to the fraction of photons in the green region with either shade tolerance (leaf expansion) or shade avoidance (stem elongation).


2012 ◽  
Vol 10 ◽  
pp. e0157 ◽  
Author(s):  
Jorge J. Casal
Keyword(s):  

2013 ◽  
Vol 163 (1) ◽  
pp. 331-353 ◽  
Author(s):  
Andrea Ciolfi ◽  
Giovanna Sessa ◽  
Massimiliano Sassi ◽  
Marco Possenti ◽  
Samanta Salvucci ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Alexander J. Hron ◽  
Atsushi Asakura

Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.


2010 ◽  
Vol 62 (1) ◽  
pp. 167-176 ◽  
Author(s):  
M. Paula Coluccio ◽  
Sabrina E. Sanchez ◽  
Luciana Kasulin ◽  
Marcelo J. Yanovsky ◽  
Javier F. Botto

Sign in / Sign up

Export Citation Format

Share Document