shade avoidance syndrome
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nguyen Hoai Nguyen ◽  
Benny Jian Rong Sng ◽  
Hock Chuan Yeo ◽  
In-Cheol Jang

Abstract Background Plants grown under shade are exposed to low red/far-red ratio, thereby triggering an array of altered phenotypes called shade avoidance syndrome (SAS). Shade negatively influences plant growth, leading to a reduction in agricultural productivity. Understanding of SAS is crucial for sustainable agricultural practices, especially for high-density indoor farming. Brassicaceae vegetables are widely consumed around the world and are commonly cultivated in indoor farms. However, our understanding of SAS in Brassicaceae vegetables and their genome-wide transcriptional regulatory networks are still largely unexplored. Results Shade induced common signs of SAS, including hypocotyl elongation and reduced carotenoids/anthocyanins biosynthesis, in two different Brassicaceae species: Brassica rapa (Choy Sum and Pak Choy) and Brassica oleracea (Kai Lan). Phenotype-assisted transcriptome analysis identified a set of genes induced by shade in these species, many of which were related to auxin biosynthesis and signaling [e.g. YUCCA8 (YUC8), YUC9, and INDOLE-3-ACETIC ACID INDUCIBLE (IAAs)] and other phytohormones signaling pathways including brassinosteroids and ethylene. The genes functioning in plant defense (e.g. MYB29 and JASMONATE-ZIM-DOMAIN PROTEIN 9) as well as in biosynthesis of anthocyanins and glucosinolates were repressed upon shade. Besides, each species also exhibited distinct SAS phenotypes. Shade strongly reduced primary roots and elongated petioles of B. oleracea, Kai Lan. However, these SAS phenotypes were not clearly recognized in B. rapa, Choy Sum and Pak Choy. Some auxin signaling genes (e.g. AUXIN RESPONSE FACTOR 19, IAA10, and IAA20) were specifically induced in B. oleracea, while homologs in B. rapa were not up-regulated under shade. Contrastingly, shade-exposed B. rapa vegetables triggered the ethylene signaling pathway earlier than B. oleracea, Kai Lan. Interestingly, shade induced the transcript levels of LONG HYPOCOTYL IN FAR-RED 1 (HFR1) homolog in only Pak Choy as B. rapa. As HFR1 is a key negative regulator of SAS in Arabidopsis, our finding suggests that Pak Choy HFR1 homolog may also function in conferring higher shade tolerance in this variety. Conclusions Our study shows that two Brassicaceae species not only share a conserved SAS mechanism but also exhibit distinct responses to shade, which will provide comprehensive information to develop new shade-tolerant cultivars that are suitable for high-density indoor farms.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Yang Liu ◽  
Feresheeh Jafari ◽  
Haiyang Wang

AbstractAs sessile organisms, plants are unable to move or escape from their neighboring competitors under high-density planting conditions. Instead, they have evolved the ability to sense changes in light quantity and quality (such as a reduction in photoactive radiation and drop in red/far-red light ratios) and evoke a suite of adaptative responses (such as stem elongation, reduced branching, hyponastic leaf orientation, early flowering and accelerated senescence) collectively termed shade avoidance syndrome (SAS). Over the past few decades, much progress has been made in identifying the various photoreceptor systems and light signaling components implicated in regulating SAS, and in elucidating the underlying molecular mechanisms, based on extensive molecular genetic studies with the model dicotyledonous plant Arabidopsis thaliana. Moreover, an emerging synthesis of the field is that light signaling integrates with the signaling pathways of various phytohormones to coordinately regulate different aspects of SAS. In this review, we present a brief summary of the various cross-talks between light and hormone signaling in regulating SAS. We also present a perspective of manipulating SAS to tailor crop architecture for breeding high-density tolerant crop cultivars.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Benny Jian Rong Sng ◽  
Gajendra Pratap Singh ◽  
Kien Van Vu ◽  
Nam-Hai Chua ◽  
Rajeev J. Ram ◽  
...  

Abstract Background Shade avoidance syndrome (SAS) commonly occurs in plants experiencing vegetative shade, causing morphological and physiological changes that are detrimental to plant health and consequently crop yield. As the effects of SAS on plants are irreversible, early detection of SAS in plants is critical for sustainable agriculture. However, conventional methods to assess SAS are restricted to observing for morphological changes and checking the expression of shade-induced genes after homogenization of plant tissues, which makes it difficult to detect SAS early. Results Using the model plant Arabidopsis thaliana, we introduced the use of Raman spectroscopy to measure shade-induced changes of metabolites in vivo. Raman spectroscopy detected a decrease in carotenoid contents in leaf blades and petioles of plants with SAS, which were induced by low Red:Far-red light ratio or high density conditions. Moreover, by measuring the carotenoid Raman peaks, we were able to show that the reduction in carotenoid content under shade was mediated by phytochrome signaling. Carotenoid Raman peaks showed more remarkable response to SAS in petioles than leaf blades of plants, which greatly corresponded to their morphological response under shade or high plant density. Most importantly, carotenoid content decreased shortly after shade induction but before the occurrence of visible morphological changes. We demonstrated this finding to be similar in other plant species. Comprehensive testing of Brassica vegetables showed that carotenoid content decreased during SAS, in both shade and high density conditions. Likewise, carotenoid content responded quickly to shade, in a manner similar to Arabidopsis plants. Conclusions In various plant species tested in this study, quantification of carotenoid Raman peaks correlate to the severity of SAS. Moreover, short-term exposure to shade can induce the carotenoid Raman peaks to decrease. These findings highlight the carotenoid Raman peaks as a biomarker for early diagnosis of SAS in plants.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyan Wang ◽  
Xinqiang Gao ◽  
Yuling Liu ◽  
Shuli Fan ◽  
Qifeng Ma

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xu Huang ◽  
Qian Zhang ◽  
Yupei Jiang ◽  
Chuanwei Yang ◽  
Qianyue Wang ◽  
...  

Shade avoidance syndrome enables shaded plants to grow and compete effectively against their neighbors. In Arabidopsis, the shade-induced de-phosphorylation of the transcription factor PIF7 (PHYTOCHROME-INTERACTING FACTOR 7) is the key event linking light perception to stem elongation. However, the mechanism through which phosphorylation regulates the activity of PIF7 is unclear. Here, we show that shade light induces the de-phosphorylation and nuclear accumulation of PIF7. Phosphorylation-resistant site mutations in PIF7 result in increased nuclear localization and shade-induced gene expression, and consequently augment hypocotyl elongation. PIF7 interacts with 14-3-3 proteins. Blocking the interaction between PIF7 and 14-3-3 proteins or reducing the expression of 14-3-3 proteins accelerates shade-induced nuclear localization and de-phosphorylation of PIF7, and enhances the shade phenotype. By contrast, the 14-3-3 overexpressing line displays an attenuated shade phenotype. These studies demonstrate a phosphorylation-dependent translocation of PIF7 when plants are in shade and a novel mechanism involving 14-3-3 proteins, mediated by the retention of PIF7 in the cytoplasm that suppresses the shade response.


2018 ◽  
Author(s):  
Mathilde Mousset ◽  
Sara Marin ◽  
Juliette Archambeau ◽  
Christel Blot ◽  
Vincent Bonhomme ◽  
...  

AbstractA classical example of phenotypic plasticity in plants is the set of trait changes in response to shade, i.e. the shade avoidance syndrome. There is widespread evidence that plants in low light conditions often avoid shade by growing taller or by increasing their photosynthetic efficiency. This plastic response is expected to have evolved in response to selection in several species, yet there is limited evidence for its genetic variation within populations, which is required for any evolutionary response to selection. In this study, we investigated the shade avoidance syndrome in snapdragon plants (Antirrhinum majus) by using a common garden approach on four natural populations from the Mediterranean region. Our results showed that, in the four populations, individual plants reacted strongly to the presence of shade by growing longer shoots, longer internodes, and increasing their specific leaf area. Our results also revealed genetic variation for the plastic response within these populations, as well as few genetic constraints to its evolution. Our findings imply that the plastic response to shade has the potential to evolve in response to selection in natural populations of A. majus.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yurong Xie ◽  
Yang Liu ◽  
Hai Wang ◽  
Xiaojing Ma ◽  
Baobao Wang ◽  
...  

Development ◽  
2016 ◽  
Vol 143 (9) ◽  
pp. 1623-1631 ◽  
Author(s):  
Marçal Gallemí ◽  
Anahit Galstyan ◽  
Sandi Paulišić ◽  
Christiane Then ◽  
Almudena Ferrández-Ayela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document