scholarly journals Shade Avoidance

2012 ◽  
Vol 10 ◽  
pp. e0157 ◽  
Author(s):  
Jorge J. Casal
Keyword(s):  
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 176
Author(s):  
Huanxuan Chen ◽  
Xinxin Zhao ◽  
Yingchun Han ◽  
Fangfang Xing ◽  
Lu Feng ◽  
...  

Modification of the cotton canopy results in shade avoidance and competition for light, which shows that density and spatial arrangement of cotton have a great impact on light interception. This experiment was conducted in 2018 and 2019 in the experimental field at the Institute of Cotton Research of Chinese Academy of Agricultural Science in Anyang city, Henan Province, China. Six plant densities of cotton variety SCRC28 were used to assess spatial competition for light in cotton populations during the whole growing period. Light interception data were collected and analyzed according to the spatial grid method and the extension of Simpson’s 3/8 rule. The results showed that at the bottom of the canopy, greater light interception was observed at high densities than at low densities, while in the external part of the layer of the canopy in the horizontal direction, low light interception was recorded at low densities. Leaf area, aboveground biomass and plant height were obviously correlated with light interception, and the cotton population with a higher density (8.7 plants m−2) performed best at the light interception competition, and with the highest yield. The results will provide guidance on light management through the optimization of the structure of the canopy to provide more solar radiation and a significant basis by which to improve the management of light and canopy architecture.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 637
Author(s):  
Paul Kusuma ◽  
Boston Swan ◽  
Bruce Bugbee

The photon flux in the green wavelength region is relatively enriched in shade and the photon flux in the blue region is selectively filtered. In sole source lighting environments, increasing the fraction of blue typically decreases stem elongation and leaf expansion, and smaller leaves reduce photon capture and yield. Photons in the green region reverse these blue reductions through the photoreceptor cryptochrome in Arabidopsis thaliana, but studies in other species have not consistently shown the benefits of photons in the green region on leaf expansion and growth. Spectral effects can interact with total photon flux. Here, we report the effect of the fraction of photons in the blue (10 to 30%) and green (0 to 50%) regions at photosynthetic photon flux densities of 200 and 500 µmol m−2 s−1 in lettuce, cucumber and tomato. As expected, increasing the fraction of photons in the blue region consistently decreased leaf area and dry mass. By contrast, large changes in the fraction of photons in the green region had minimal effects on leaf area and dry mass in lettuce and cucumber. Photons in the green region were more potent at a lower fraction of photons in the blue region. Photons in the green region increased stem and petiole length in cucumber and tomato, which is a classic shade avoidance response. These results suggest that high-light crop species might respond to the fraction of photons in the green region with either shade tolerance (leaf expansion) or shade avoidance (stem elongation).


2013 ◽  
Vol 163 (1) ◽  
pp. 331-353 ◽  
Author(s):  
Andrea Ciolfi ◽  
Giovanna Sessa ◽  
Massimiliano Sassi ◽  
Marco Possenti ◽  
Samanta Salvucci ◽  
...  

2010 ◽  
Vol 62 (1) ◽  
pp. 167-176 ◽  
Author(s):  
M. Paula Coluccio ◽  
Sabrina E. Sanchez ◽  
Luciana Kasulin ◽  
Marcelo J. Yanovsky ◽  
Javier F. Botto

Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 102 ◽  
Author(s):  
Giovanna Sessa ◽  
Monica Carabelli ◽  
Marco Possenti ◽  
Giorgio Morelli ◽  
Ida Ruberti

To detect the presence of neighboring vegetation, shade-avoiding plants have evolved the ability to perceive and integrate multiple signals. Among them, changes in light quality and quantity are central to elicit and regulate the shade avoidance response. Here, we describe recent progresses in the comprehension of the signaling mechanisms underlying the shade avoidance response, focusing on Arabidopsis, because most of our knowledge derives from studies conducted on this model plant. Shade avoidance is an adaptive response that results in phenotypes with a high relative fitness in individual plants growing within dense vegetation. However, it affects the growth, development, and yield of crops, and the design of new strategies aimed at attenuating shade avoidance at defined developmental stages and/or in specific organs in high-density crop plantings is a major challenge for the future. For this reason, in this review, we also report on recent advances in the molecular description of the shade avoidance response in crops, such as maize and tomato, and discuss their similarities and differences with Arabidopsis.


2003 ◽  
Vol 81 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Humberto Fabio Causin ◽  
Renata D Wulff

Morphological shade-avoidance responses have been hypothesized to be a form of adaptive plasticity to improve competition for light; however, little is known about their intraspecific variability and their effect on reproductive fitness. To compare plant responses either at a common age or at a common phenological stage, two experiments were conducted with early- and late-flowering Chenopodium album plants exposed to different red (660 nm) to far red (730 nm) ratios. In the first experiment, plant height and number of leaves were recorded at several times during the vegetative stage, and at the onset of flowering, each plant was harvested and other growth traits were measured. In the second experiment, three destructive harvests were performed across the whole plant cycle. Plant growth and development markedly differed between early- and late-flowering plants in all of the conditions tested. Light treatments significantly affected stem length, total leaf number, total leaf area, and relative allocation to leaf biomass. In all families, the response of stem elongation to light treatments decreased later in the development, while changes in the other plastic responses were mostly due to variations in plant growth. No significant treatment effect was found on relative biomass allocation to reproductive structures. However, individual seed mass significantly differed between certain groups, indicating that light quality can affect reproductive fitness through changes in traits other than fruit or seed set.Key words: Chenopodium album, fitness, intraspecific variability, phenotypic plasticity, red to far red ratio, shade-avoidance responses.


Sign in / Sign up

Export Citation Format

Share Document