scholarly journals Arabidopsis Chloroplast RNA Binding Proteins CP31A and CP29A Associate with Large Transcript Pools and Confer Cold Stress Tolerance by Influencing Multiple Chloroplast RNA Processing Steps

2012 ◽  
Vol 24 (10) ◽  
pp. 4266-4280 ◽  
Author(s):  
Christiane Kupsch ◽  
Hannes Ruwe ◽  
Sandra Gusewski ◽  
Michael Tillich ◽  
Ian Small ◽  
...  
2010 ◽  
pp. 177-203 ◽  
Author(s):  
Reimo Zoschke ◽  
Christiane Kupsch ◽  
Christian Schmitz-Linneweber

RNA Biology ◽  
2010 ◽  
Vol 7 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Michael Tillich ◽  
Susanne Beick ◽  
Christian Schmitz-Linneweber

2021 ◽  
Vol 60 ◽  
pp. 102535
Author(s):  
Noam Shahar ◽  
Tamar Elman ◽  
Rosalind Williams-Carrier ◽  
Oren Ben-Zvi ◽  
Iftach Yacoby ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Scott E. Ugras ◽  
James Shorter

Amyotrophic Lateral Sclerosis (ALS) is an adult onset neurodegenerative disease, which is universally fatal. While the causes of this devastating disease are poorly understood, recent advances have implicated RNA-binding proteins (RBPs) that contain predicted prion domains as a major culprit. Specifically, mutations in the RBPs TDP-43 and FUS can cause ALS. Cytoplasmic mislocalization and inclusion formation are common pathological features of TDP-43 and FUS proteinopathies. Though these RBPs share striking pathological and structural similarities, considerable evidence suggests that the ALS-linked mutations in TDP-43 and FUS can cause disease by disparate mechanisms. In a recent study, Couthouis et al. screened for protein candidates that were also involved in RNA processing, contained a predicted prion domain, shared other phenotypic similarities with TDP-43 and FUS, and identified TAF15 as a putative ALS gene. Subsequent sequencing of ALS patients successfully identified ALS-linked mutations in TAF15 that were largely absent in control populations. This study underscores the important role that perturbations in RNA metabolism might play in neurodegeneration, and it raises the possibility that future studies will identify other RBPs with critical roles in neurodegenerative disease.


2010 ◽  
Vol 68 (5) ◽  
pp. 735-748 ◽  
Author(s):  
Jessica Jacobs ◽  
Ulrich Kück

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eric L. Van Nostrand ◽  
Gabriel A. Pratt ◽  
Brian A. Yee ◽  
Emily C. Wheeler ◽  
Steven M. Blue ◽  
...  

2020 ◽  
Vol 21 (16) ◽  
pp. 5633
Author(s):  
Benjamin Lenzen ◽  
Thilo Rühle ◽  
Marie-Kristin Lehniger ◽  
Ayako Okuzaki ◽  
Mathias Labs ◽  
...  

Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into one post-transcriptional operon.


2018 ◽  
Vol 62 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Nikolay Manavski ◽  
Lisa-Marie Schmid ◽  
Jörg Meurer

In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.


Sign in / Sign up

Export Citation Format

Share Document