scholarly journals High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5' and 3' flanking sequences and the leader intron.

1995 ◽  
Vol 7 (9) ◽  
pp. 1387-1394 ◽  
Author(s):  
H Fu ◽  
S Y Kim ◽  
W D Park
1993 ◽  
Vol 13 (9) ◽  
pp. 5266-5275
Author(s):  
R D Palmiter ◽  
E P Sandgren ◽  
D M Koeller ◽  
R L Brinster

DNA regions of 10 and 7 kb that flank the mouse metallothionein II (MT-II) and MT-I genes, respectively, were combined with a minimally marked MT-I (MT-I*) gene and tested in transgenic mice. This construct resulted in (i) position-independent expression of MT-I* mRNA and copy number-dependent expression, (ii) levels of hepatic MT-I mRNA per cell per transgene that were about half that derived from endogenous MT-I genes, (iii) appropriate regulation by metals and hormones, and (iv) tissue distribution of transgene mRNA that resembled that of endogenous MT-I mRNA. These features were not observed when MT-I* was tested without the flanking regions. These MT-I flanking sequences also improved the expression of rat growth hormone reporter genes, with or without introns, that were under the control of the MT-I promoter. Moreover, they enhanced expression from two of four heterologous promoters/enhancers that were tested. Deletion analysis indicated that regions known to have DNase I-hypersensitive sites were necessary but not sufficient for high-level expression. These data suggest that the DNA regions flanking the mouse MT-I and MT-II genes have functions like the locus control regions described for other genes.


2003 ◽  
Vol 60 (2) ◽  
pp. 239-244 ◽  
Author(s):  
José Carlos da Silva ◽  
José Donizeti Alves ◽  
Amauri Alves de Alvarenga ◽  
Marcelo Murad Magalhães ◽  
Dárlan Einstein do Livramento ◽  
...  

One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L.) seedlings with reduced (low) and high (normal) levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.


1988 ◽  
Vol 8 (12) ◽  
pp. 5200-5205
Author(s):  
X H Sun ◽  
J Y Tso ◽  
J Lis ◽  
R Wu

Drosophila melanogaster contains two genes encoding glyceraldehyde-3-phosphate dehydrogenase, Gapdh-1 and Gapdh-2. The two genes are highly conserved in their coding sequences but not in their noncoding and flanking sequences. We report that both genes are expressed at higher levels in larval, late pupal, and adult stages than in embryonic, early, and midpupal stages. However, a major difference in the expression of the two genes is observed in the adult stage, during which the level of the Gapdh-1 transcript decreases over fourfold, while that of the Gapdh-2 transcript remains at a constant high level. In addition, the Gapdh-1 transcript appears highly enriched in the thorax section compared with the head and abdomen sections, while the Gapdh-2 transcript is evenly distributed. Analyses of the expression patterns of the two Gapdh hybrid genes, GAP1/2 and GAP2/1, revealed that the two genes have a distinct organization of their regulatory sequences. The principle regulatory sequences of Gapdh-2 reside upstream of the translation start, while the principle sequences specifying the level and developmental pattern of Gapdh-1 expression reside downstream of the translation start.


Cell ◽  
1989 ◽  
Vol 56 (6) ◽  
pp. 979-986 ◽  
Author(s):  
David R. Greaves ◽  
Frank D. Wilson ◽  
Georgina Lang ◽  
Dimitris Kioussis

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 132
Author(s):  
Jianlin Chu ◽  
Jiheng Yue ◽  
Song Qin ◽  
Yuqiang Li ◽  
Bin Wu ◽  
...  

Rare ginsenoside Rh2 exhibits diverse pharmacological effects. UDP-glycosyltransferase (UGT) catalyzed glycosylation of protopanaxadiol (PPD) has been of growing interest in recent years. UDP-glycosyltransferase Bs-YjiC coupling sucrose synthase in one-pot reaction was successfully applied to ginsenoside biosynthesis with UDP-glucose regeneration from sucrose and UDP, which formed a green and sustainable approach. In this study, the his-tagged UDP-glycosyltransferase Bs-YjiC mutant M315F and sucrose synthase AtSuSy were co-immobilized on heterofunctional supports. The affinity adsorption significantly improved the capacity of specific binding of the two recombinant enzymes, and the dual enzyme covalently cross-linked by the acetaldehyde groups significantly promoted the binding stability of the immobilized bienzyme, allowing higher substrate concentration by easing substrate inhibition for the coupled reaction. The dual enzyme amount used for ginsenoside Rh2 biosynthesis is Bs-YjiC-M315F: AtSuSy = 18 mU/mL: 25.2 mU/mL, a yield of 79.2% was achieved. The coimmobilized M315F/AtSuSy had good operational stability of repetitive usage for 10 cycles, and the yield of ginsenoside Rh2 was kept between 77.6% and 81.3%. The high titer of the ginsenoside Rh2 cumulatively reached up to 16.6 mM (10.3 g/L) using fed-batch technology, and the final yield was 83.2%. This study has established a green and sustainable approach for the production of ginsenoside Rh2 in a high level of titer, which provides promising candidates for natural drug research and development.


2004 ◽  
Vol 78 (22) ◽  
pp. 12157-12168 ◽  
Author(s):  
Sarah Prudhomme ◽  
Guy Oriol ◽  
François Mallet

ABSTRACT The HERV-W family contains hundreds of loci diversely expressed in several physiological and pathological contexts. A unique locus termed ERVWE1 encodes an envelope glycoprotein (syncytin) involved in hominoid placental physiology. Here we show that syncytin expression is regulated by a bipartite element consisting of a cyclic AMP (cAMP)-inducible long terminal repeat (LTR) retroviral promoter adjacent to a cellular enhancer conferring a high level of expression and placental tropism. Deletion mutant analysis showed that the ERVWE1 5′ LTR contains binding sites essential for basal placental activity in the region from positions +1 to +125. The region from positions +125 to +310 represents a cAMP-responsive core HERV-W promoter active in all cell types. Site-directed mutagenesis analysis highlighted the complexity of U3 regulation. ERVWE1 placenta-specific positive (e.g., T240) and negative (e.g., G71) regulatory sites were identified, as were essential sites required for basic activity (e.g., A247). The flanking sequences of the ERVWE1 provirus contain several putative regulatory elements. The upstream HERV-H and HERV-P LTRs were found to be inactive. Conversely, the 436-bp region located between the HERV-P LTR and ERVWE1 was shown to be an upstream regulatory element (URE) which is significantly active in placenta cells. This URE acts as a tissue-specific enhancer. Genetic and functional analyses of hominoid UREs revealed large differences between UREs of members of the Hominidae and the Hylobatidae. These data allowed the identification of a positive regulatory region from positions −436 to −128, a mammalian apparent LTR retrotransposon negative regulatory region from positions −128 to −67, and a trophoblast-specific enhancer (TSE) from positions −67 to −35. Putative AP-2, Sp-1, and GCMa binding sites are essential constituents of the 33-bp TSE.


Sign in / Sign up

Export Citation Format

Share Document