Multiple-data-set Rietveld analysis using isotopes in powder neutron diffraction. I. Accurate determination of the doping level in the ternary system NixMg1−xO, 0.005

2001 ◽  
Vol 34 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Paul F. Henry ◽  
Mark T. Weller ◽  
Chick C. Wilson

The use of isotopes to extract precise and very accurate structural information in complex Rietveld analysis has been demonstrated by comparison of results obtained for single-data-set analysis with those from multiple-data-set single-crystallographic-model analysis of NixMg1−xO doped with various nickel isotopes. Fractional occupancies of dopants can be accurately determined down to at least the 0.5% doping level, which cannot be obtained through single-sample-data-set refinements because of correlation effects, even when a large contrast exists between the nickel isotope used and magnesium.

2003 ◽  
Vol 36 (2) ◽  
pp. 206-212
Author(s):  
Paul F. Henry ◽  
Harriott Nowell ◽  
Mark T. Weller ◽  
Chick C. Wilson

The technique of isotope-substitution neutron diffraction (ISND) and combined-data-set Rietveld analysis from powder neutron data of crystalline materials is presented and compared with single-data-set powder refinement methods. The rationale behind improvements in the precision and accuracy of the refined model as a result of reduction in parameter correlation in the least-squares technique is described. The improvements are demonstrated practically through a study of isotopically copper-substituted tenorite, CuO, at 2 and 300 K. Typically, the estimated errors on structural parameters from the combined analysis technique are 30% lower than separate single-data-set analyses. Comparison of the precision and accuracy of the structural models obtained from this investigation with previous single-crystal X-ray studies are also presented.


2016 ◽  
Author(s):  
Peter Zotter ◽  
Hanna Herich ◽  
Martin Gysel ◽  
Imad El-Haddad ◽  
Yanlin Zhang ◽  
...  

Abstract. Black carbon (BC) measured by a multi-wavelength Aethalometer can be apportioned to traffic and wood burning. The method is based on the differences in the dependence of aerosol absorption on the wavelength of light used to investigate the sample, parameterized by the source-specific Ångström absorption exponent (α). While the spectral dependence (defined as α values) of the traffic-related BC light absorption is low, wood smoke particles feature enhanced light absorption in the blue and near ultraviolet. Source apportionment results using this methodology are hence strongly dependent on the α values assumed for both types of emissions: traffic αTR, and wood burning αWB. Most studies use a single αTR and αWB pair in the Aethalometer model, derived from previous work. However, an accurate determination of the source specific α values is currently lacking and in some recent publications the applicability of the Aethalometer model was questioned. Here we present an indirect methodology for the determination of WB and αTR by comparing the source apportionment of BC using the Aethalometer model with 14C measurements of the EC fraction on 16 to 40 h filter samples from several locations and campaigns across Switzerland during 2005–2012, mainly in winter. The data obtained at eight stations with different source characteristics also enabled the evaluation of the performance and the uncertainties of the Aethalometer model in different environments. The best combination of αTR and αWB (0.9 and 1.68, respectively) was obtained by fitting the Aethalometer model outputs (calculated with the absorption coefficients at 470 nm and 950 nm) against the fossil fraction of EC (ECF/EC) derived from 14C measurements. Aethalometer and 14C source apportionment results are well correlated (r = 0.81) and the fitting residuals exhibit only a minor positive bias of 1.6 % and an average precision of 9.3 %. This indicates that the Aethalometer model reproduces reasonably well the 14C results for all stations investigated in this study using our best estimate of a single αWB and αTR pair. Combining the EC, 14C and Aethalometer measurements further allowed assessing the dependence of the mass absorption cross section (MAC) of BC on its source. Results indicate no significant difference in MAC at 880 nm between BC originating from traffic or wood burning emissions. Using ECF/EC as reference and constant a priori selected αTR values, αWB was also calculated for each individual data point. No clear station-to-station or season-to-season differences in αWB were observed, but αTR and αWB values are interdependent. For example, an increase in αTR by 0.1 results in a decrease in αWB by 0.1. The fitting residuals of different αTR and αWB combinations depend on ECF/EC such that a good agreement cannot be obtained over the entire ECF/EC range using other α pairs. Additional combinations of αTR = 0.8, and 1.0 and αWB = 1.8 and 1.6, respectively, are possible but only for ECF/EC between ~ 40 % and 85 %. Applying α values previously used in literature such as αWB of ~ 2 or any αWB in combination with αTR = 1.1 to our data set results in large residuals. Therefore we recommend to use the best α combination as obtained here (αTR = 0.9 and αWB = 1.68) in future studies when no or only limited additional information like 14C measurements are available. However, these results were obtained for locations impacted by BC mainly from traffic consisting of a modern car fleet and residential wood combustion with well-constrained combustion efficiencies. For regions of the world with different combustion conditions, additional BC sources or fuels used further investigations are needed.


2020 ◽  
Author(s):  
Stefano Toso ◽  
Dmitry Baranov ◽  
Davide Altamura ◽  
Francesco Scattarella ◽  
Jakob Dahl ◽  
...  

Colloidal superlattices are fascinating materials made of ordered nanocrystals, yet they are rarely called “atomically precise.” That is unsurprising, given how challenging it is to quantify the degree of structural order in these materials. However, once that order crosses a certain threshold, constructive interference of X-rays diffracted by the nanocrystals dominates the diffraction pattern, offering a wealth of structural information. By treating nanocrystals as scattering sources forming a self-probing interferometer, we developed a multilayer diffraction method that enabled the accurate determination of nanocrystal size, interparticle spacing, and their fluctuations for samples of self-assembled CsPbBr<sub>3</sub> and PbS nanomaterials. The average nanocrystal displacement of 0.32-1.4 Å in the studied superlattices provides a figure of merit for their structural perfection and approaches the atomic displacement parameters found in traditional crystals. The method requires a laboratory-grade diffractometer and an open-source fitting algorithm for data analysis, providing a competitive alternative to resource-intensive synchrotron experiments.


2020 ◽  
Author(s):  
Bogi Hansen ◽  
Karin M. H. Larsen ◽  
Hjálmar Hátún ◽  
Svein Østerhus

&lt;p&gt;Warm and saline water from the North Atlantic enters the Arctic Mediterranean through three gaps. The strongest of these three flows is the inflow between Iceland and Faroes, which is focused into a narrow boundary current north of the Faroes. This boundary current, the Faroe Current, has been observed with regular CTD cruises since 1988 and with moored ADCPs since 1997, as well as satellite altimetry since 1993. Once calibrated by the long-term ADCP measurements, the satellite altimetry is found to yield high-accuracy determination of the velocity field and volume transport down to fixed depth. Due to geostrophic adjustment, satellite altimetry combined with CTD data also allow fairly accurate determination of the depth of the Atlantic layer. From the combined data set, monthly transport time series have been generated for the period Jan 1993 to April 2019. Over the period, the annually averaged volume transport of Atlantic water in the Faroe Current seems to have increased slightly, while the heat transport relative to an outflow temperature of 0&amp;#176;C increased by 13%, significant at the 95% level. The salinity increased from the mid-1990s to around 2010, after which it has decreased, especially after 2016, leading to the lowest salinities in the whole period since 1988. To stay updated on a possible inflow reduction due to reduced thermohaline ventilation caused by this freshening, the future monitoring system of the Faroe Current is planned to be expanded with moored PIES (Pressure Inverted Echo Sounders). An experiment with two PIES in 2017-2019 has documented that these instruments allow high-accuracy monitoring of the depth of the Atlantic layer on the section, which combined with satellite altimetry and CTD observations should give more accurate transport estimates.&lt;/p&gt;


Author(s):  
Daniel E. O'Leary

This paper reviews a case study used as part of introducing data and analytics in a Masters of Accounting curriculum. In particular, this paper presents a data set, an approach to analyzing that data using analytic approaches and suggests that analysis of that data set could function as a capstone project, providing a review over multiple data and analytical tools and methodologies. The data set includes almost 50,000 purchase orders and allows the use of multiple data analytic approaches for anomaly detection, time series analysis and visualization to meet audit goals such as identification of unusual or significant items, determination of trends and concentration of purchasing activity.


2017 ◽  
Vol 17 (6) ◽  
pp. 4229-4249 ◽  
Author(s):  
Peter Zotter ◽  
Hanna Herich ◽  
Martin Gysel ◽  
Imad El-Haddad ◽  
Yanlin Zhang ◽  
...  

Abstract. Equivalent black carbon (EBC) measured by a multi-wavelength Aethalometer can be apportioned to traffic and wood burning. The method is based on the differences in the dependence of aerosol absorption on the wavelength of light used to investigate the sample, parameterized by the source-specific absorption Ångström exponent (α). While the spectral dependence (defined as α values) of the traffic-related EBC light absorption is low, wood smoke particles feature enhanced light absorption in the blue and near ultraviolet. Source apportionment results using this methodology are hence strongly dependent on the α values assumed for both types of emissions: traffic αTR, and wood burning αWB. Most studies use a single αTR and αWB pair in the Aethalometer model, derived from previous work. However, an accurate determination of the source specific α values is currently lacking and in some recent publications the applicability of the Aethalometer model was questioned.Here we present an indirect methodology for the determination of αWB and αTR by comparing the source apportionment of EBC using the Aethalometer model with 14C measurements of the EC fraction on 16 to 40 h filter samples from several locations and campaigns across Switzerland during 2005–2012, mainly in winter. The data obtained at eight stations with different source characteristics also enabled the evaluation of the performance and the uncertainties of the Aethalometer model in different environments. The best combination of αTR and αWB (0.9 and 1.68, respectively) was obtained by fitting the Aethalometer model outputs (calculated with the absorption coefficients at 470 and 950 nm) against the fossil fraction of EC (ECF ∕ EC) derived from 14C measurements. Aethalometer and 14C source apportionment results are well correlated (r  =  0.81) and the fitting residuals exhibit only a minor positive bias of 1.6 % and an average precision of 9.3 %. This indicates that the Aethalometer model reproduces reasonably well the 14C results for all stations investigated in this study using our best estimate of a single αWB and αTR pair. Combining the EC, 14C, and Aethalometer measurements further allowed assessing the dependence of the mass absorption cross section (MAC) of EBC on its source. Results indicate no significant difference in MAC at 880 nm between EBC originating from traffic or wood-burning emissions. Using ECF ∕ EC as reference and constant a priori selected αTR values, αWB was also calculated for each individual data point. No clear station-to-station or season-to-season differences in αWB were observed, but αTR and αWB values are interdependent. For example, an increase in αTR by 0.1 results in a decrease in αWB by 0.1. The fitting residuals of different αTR and αWB combinations depend on ECF ∕ EC such that a good agreement cannot be obtained over the entire ECF ∕ EC range using other α pairs. Additional combinations of αTR  =  0.8, and 1.0 and αWB  =  1.8 and 1.6, respectively, are possible but only for ECF ∕ EC between  ∼  40 and 85 %. Applying α values previously used in the literature such as αWB of  ∼  2 or any αWB in combination with αTR  =  1.1 to our data set results in large residuals. Therefore we recommend to use the best α combination as obtained here (αTR  =  0.9 and αWB  =  1.68) in future studies when no or only limited additional information like 14C measurements are available. However, these results were obtained for locations impacted by black carbon (BC) mainly from traffic consisting of a modern car fleet and residential wood combustion with well-constrained combustion efficiencies. For regions of the world with different combustion conditions, additional BC sources, or fuels used, further investigations are needed.


2007 ◽  
Vol 63 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Mark T. Weller ◽  
Paul F. Henry ◽  
Mark E. Light

The structure determination of caesium oxalate monohydrate using single-crystal X-ray diffraction, powder neutron diffraction data and a combination of both has been undertaken. Results show that even for hydrogen-containing materials data collected rapidly on a high-flux neutron diffractometer improve the refinement such that accurate positional and thermal displacement parameters can be extracted for all atom types. This contrasts with structural models extracted from either data set alone that demonstrate the inherent limitations of the individual diffraction methods. The rapidity with which useful neutron diffraction data has been collected from hydrogen-containing compounds, 10 min in this study, indicates that the technique should be widely applicable allowing the facile and accurate extraction of hydrogen positions for many compounds.


2013 ◽  
Vol 46 (3) ◽  
pp. 769-778 ◽  
Author(s):  
Simon Welzmiller ◽  
Philipp Urban ◽  
Felix Fahrnbauer ◽  
Loredana Erra ◽  
Oliver Oeckler

This article attempts to present straightforward and easy-to-understand guidelines for the determination of element distribution in compounds lacking X-ray scattering contrast because they have similar electron counts. Different sources of anomalous dispersion correction terms (especially Δf′ values) are compared with respect to their suitability, reliability and quality. Values from databases are compared with Δfvalues calculated from fluorescence spectra and those refined from single-crystal diffraction data, using both reference crystals without scattering contrast problems and crystals containing elements with similar electron counts. The number of data sets required to determine reliably the element distribution and the optimum wavelengths to be used are discussed. Joint multiple data set refinements are suitable for the refinement of multiply mixed occupancies of elements lacking scattering contrast. The most straightforward method of obtaining Δf′ values depends on the complexity of the problem to be solved and the precision required.


1994 ◽  
Vol 59 (9) ◽  
pp. 1951-1963
Author(s):  
Jiří Perůtka ◽  
Josef Havel ◽  
Luděk Jančář

This paper deals with nonconventional approaches to multicomponent spectrophotometric analysis consisting of (i) simultaneous or consecutive addition of several nonselective reagents in the multicomponent determination of metal ions, and (ii) the use of absorbance data which have been measured at different pH values or in different experimental conditions and subsequently combined into a single data set, evaluated by the partial least squares method. The following multicomponent mixtures of metal ions with reagents were examined: Co2+ and Fe3+ with nitroso-R-salt and 1,10-phenanthroline; Co2+, Cu2+ and Fe3+ with nitroso-R-salt and zincon; Co2+, Cu2+ and Zn2+ with nitroso- R-salt and zincon; and Cu2+, Zn2+ and Ni2+ with zincon and PAR. The average relative error of determination was 2% (two metal ions) and 5% (three metal ions). Cu2+, Zn2+ and Ni2+ were also quantitated in ALPAKA alloy with relative errors of 4 - 9%.


Sign in / Sign up

Export Citation Format

Share Document