An X-ray determination of the thermal expansion of α-phase Ag–Al alloys at high temperatures

1986 ◽  
Vol 19 (6) ◽  
pp. 484-485
Author(s):  
S. K. Pradhan ◽  
M. De
1981 ◽  
Vol 6 ◽  
Author(s):  
V. I. Spitsyn ◽  
A. A. Minaev ◽  
L. I. Barsova ◽  
P. Ya. Glazunov ◽  
V. N. Vetchkanov

ABSTRACTThis work is one of the first attempts to work out a proper technique for the determination of the diffusion of the phosphate glass components into various rocks by using X-ray microanalysis. Under study was thermal and radiationenhanced diffusion of phosphorus, chromium from phosphate glasses into the samples of basalt, metagabbro, metadunite and quartz at high temperatures (to 600°) during gamma irradiation. Radiation enhanced diffusion of ions into rocks.


1969 ◽  
Vol 30 (10) ◽  
pp. 2484-2486 ◽  
Author(s):  
V.T. Deshpande ◽  
S.V. Suryanarayana

1983 ◽  
Vol 27 ◽  
pp. 397-404
Author(s):  
J. S. Pressnall ◽  
J. J. Fitzpatrick ◽  
Paul Predecki

AbstractA computer-controlled high temperature Guinier diffractometer system for accurate determination of lattice thermal expansion is described. A critical test of the system using α-Al2O3 (0.3μ polishing alumina) showed close agreement with the single crystal expansion data of Wachtman et al. Lattice thermal expansion of cordierite doped with the following dopants: Ge+4, P+5, Zn+2, Li+1 and Ca+2 was investigated. Of these the Li+1 at the 5% level (5% of Si+4 replaced by Li+1 + Al+3) produced the largest decrease in mean lattice expansion.


Author(s):  
Sergey Yarmolenko ◽  
Devendra Ray ◽  
Devdas Pai ◽  
Jag Sankar

Phase transitions and CTE of 10mol%Sc2O3-1mol%CeO2-ZrO2 ceramics sintered from two commercial powders produced by Praxair Surface Technologies, USA and DKKK, Japan are studied. Morphology of powders and grain structure of ceramics were studied by SEM and AFM. Ceramics produced from Praxair powder exist in cubic phase while DKKK-based ceramics exhibit slow phase transformation from cubic to rhombohedral (β) phase at temperatures 350–400°C. c-β Phase transition temperature is 440°C obtained by high temperature x-ray diffractometry (HTXRD) and differential scanning calorimetry. Coefficients of thermal expansion of cubic and β-phases were calculated from temperature dependence of lattice parameters obtained by HTXRD in the temperature range of 25–800°C. These results can be further used for the optimal design of SOFC layered structures as well as for determination of their reliability and durability under operational conditions.


Sign in / Sign up

Export Citation Format

Share Document