A Wide-Bandpass Multilayer Monochromator for Biological Small-Angle Scattering and Fiber Diffraction Studies

1998 ◽  
Vol 31 (5) ◽  
pp. 672-682 ◽  
Author(s):  
Hiro Tsuruta ◽  
Sean Brennan ◽  
Zofia U. Rek ◽  
Thomas C. Irving ◽  
W. H. Tompkins ◽  
...  

Many biological applications of small-angle X-ray scattering, in particular time-resolved studies, are often limited by the flux incident on the sample due to the smaller scattering cross section of biological specimens. The wider-energy bandpass of a monochromator that consists of a pair of synthetic multilayer microstructures can, in principle, provide a flux two orders of magnitude higher than that of an Si(111) double-crystal monochromator. Two types of multilayers have been installed in the standard monochromator tank of beamline 4-2 at the Stanford Synchrotron Radiation Laboratory; the multilayer beam has been characterized for studies of small-angle X-ray scattering/diffraction from biological materials. Reflectivity and topography measurements indicate that the multilayers are quite adequate for these applications and a pair of Mo/B4C multilayers provided a 10–30 times increase in flux, compared with the flux level obtained with an Si(111) double-crystal monochromator. The increased flux level is very useful in time-resolved scattering studies as well as for recording weak scattering at higher angles. Having carried out many solution scattering and fiber diffraction experiments, we conclude that the use of multilayer does not result in significant broadening of diffraction peaks nor does it have appreciable effects on small-angle resolution. No significant increase in background is observed.

1998 ◽  
Vol 5 (3) ◽  
pp. 506-508 ◽  
Author(s):  
H. Amenitsch ◽  
M. Rappolt ◽  
M. Kriechbaum ◽  
H. Mio ◽  
P. Laggner ◽  
...  

The double-focusing high-flux wiggler beamline dedicated to small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) at ELETTRA has gone into user operation recently. It has been designed specifically for time-resolved studies of non-crystalline and fibrous materials in the submillisecond time scale, and has been optimized for small-angle scattering measurements. An overview of the beamline status and of some representative results, highlighting the performance of the SAXS beamline, are given.


1997 ◽  
Vol 30 (5) ◽  
pp. 867-871 ◽  
Author(s):  
P. Bösecke ◽  
O. Diat

The high-brilliance beamline (BL4/ID2) at the European Synchrotron Radiation Facility (ESRF) in Grenoble has been constructed with the emphasis on time-resolved small-angle X-ray scattering and macromolecular crystallography. It has been open to users for two years. The beamline has opened up new areas in small-angle scattering research, facilitating (a) small-angle crystallography on structures with unit cells of several hundredths of nanometres, (b) overlap with the light scattering range for the study of optical systems, (c) high photon flux for time-resolved experiments and (d) a high spatial coherence allowing submicrometre imaging with X-rays. The set-up and the detector system of the small-angle scattering station are presented. A method for obtaining absolute scattering intensities is described. The parasitic background at the station is discussed in terms of absolute scattering intensities.


1997 ◽  
Vol 30 (5) ◽  
pp. 872-876 ◽  
Author(s):  
H. Amenitsch ◽  
S. Bernstorff ◽  
M. Kriechbaum ◽  
D. Lombardo ◽  
H. Mio ◽  
...  

A new beamline for small-angle X-ray scattering (SAXS) has recently been constructed and is presently under final commissioning at the 2 GeV storage ring ELETTRA. It has been designed specifically for time-resolved studies of non-crystalline and fibrous materials and has been optimized for small-angle scattering measurements. The beamline operates with a SAXS resolution between 10 and about 1400 Å in d spacing (at 8 keV) and has been optimized with respect to high flux at the sample [of the order of 1013 photons s−1 for 8 keV photons (2 GeV, 400 mA)]. Soon it will be possible to perform simultaneously wide-angle diffraction measurements in the d-spacing range 1.2–8 Å (at 8 keV). In order to allow time-resolved (resolution ~1 ms) small-angle scattering measurements, a high-power 57-pole wiggler is used as the beamline source. From its beam, one of three discrete energies, 5.4, 8 and 16 keV, can be selected with a double-crystal monochromator, which contains three pairs of asymmetrically cut plane Si(111) crystals. Downstream, the beam is focused horizontally and vertically by a toroidal mirror. Commissioning tests of this new SAXS beamline showed that all design parameters have been realized.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


2014 ◽  
Vol 47 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Zoltán Varga ◽  
András Wacha ◽  
Attila Bóta

Time-resolved synchrotron small-angle X-ray scattering (SAXS) was used to study the structural changes during the osmotic shrinkage of a pharmacologically relevant liposomal drug delivery system. Sterically stabilized liposomes (SSLs) with a diameter of 100 nm and composed of hydrogenated soy phosphocholine, cholesterol and distearoyl-phosphoethanolamine-PEG 2000 prepared in a salt-free buffer were mixed with a buffered 0.3 MNaCl solution using a stopped flow apparatus. The changes in the liposome size and the bilayer structure were followed by using SAXS with a time resolution of 20 ms. A linear decrease in liposome size is observed during the first ∼4 s of the osmotic shrinkage, which reveals a water permeability value of 0.215 (15) µm s−1. The change in the size of the liposomes upon the osmotic shrinkage is also confirmed by dynamic light scattering. After this initial step, broad correlation peaks appear on the SAXS curves in theqrange of the bilayer form factor, which indicates the formation of bi- or oligolamellar structures. Freeze-fracture combined with transmission electron microscopy revealed that lens-shaped liposomes are formed during the shrinkage, which account for the appearance of the quasi-Bragg peaks superimposed on the bilayer form factor. On the basis of these observations, it is proposed that the osmotic shrinkage of SSLs is a two-step process: in the initial step, the liposome shrinks in size, while the area/lipid adapts to the decreased surface area, which is then followed by the deformation of the spherical liposomes into lens-shaped vesicles.


Polymer ◽  
2001 ◽  
Vol 42 (21) ◽  
pp. 8965-8973 ◽  
Author(s):  
Zhi-Gang Wang ◽  
Xuehui Wang ◽  
Benjamin S. Hsiao ◽  
Saša Andjelić ◽  
Dennis Jamiolkowski ◽  
...  

2011 ◽  
Vol 405 (5) ◽  
pp. 1284-1294 ◽  
Author(s):  
Tsuyoshi Konuma ◽  
Tetsunari Kimura ◽  
Shuzo Matsumoto ◽  
Yuji Goto ◽  
Tetsuro Fujisawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document