scholarly journals In situ powder X-ray crystallography for gas sorption in metal–organic frameworks

2019 ◽  
Vol 75 (a1) ◽  
pp. a298-a298
Author(s):  
Henry Zhi He Jiang ◽  
Julia Oktawiec ◽  
Rodolfo Torres-Gavosto ◽  
Eugene Kim ◽  
Benjamin A. Trump ◽  
...  
2020 ◽  
Vol 49 (29) ◽  
pp. 9948-9952 ◽  
Author(s):  
Koh Sugamata ◽  
Chikaze Takagi ◽  
Keiko Awano ◽  
Teruyuki Iihama ◽  
Mao Minoura

Two mixed-ligand metal–organic frameworks using benzene-1,4-dihydroxamic acid and isonicotinic acid were synthesized and fully characterized by single-crystal X-ray crystallography as well as N2, H2, and CO2 gas-sorption measurements.


Author(s):  
Stephen J. I. Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C157-C157
Author(s):  
Claire Hobday ◽  
Stephen Moggach ◽  
Carole Morrison ◽  
Tina Duren ◽  
Ross Forgan

Metal-organic frameworks (MOFs) are a well-studied class of porous materials with the potential to be used in many applications such as gas storage and catalysis.[1] UiO-67 (UiO = University of Oslo), a MOF built from zirconium oxide units connected with 4,4-biphenyldicarboxylate (BDC) linkers, forms a face centred cubic structure. Zirconium has a high affinity towards oxygen ligands making these bridges very strong, resulting in UiO-based MOFs having high chemical and thermal stability compared to other MOF structures. Moreover, UiO-67 has become popular in engineering studies due to its high mechanical stability.[2] Using high pressure x-ray crystallography we can exert MOFs to GPa pressures, experimentally exploring the mechanical stability of MOFs to external pressure. By immersing the crystal in a hydrostatic medium, pressure is applied evenly to the crystal. On surrounding a porous MOF with a hydrostatic medium composed of small molecules (e.g. methanol), the medium can penetrate the MOF, resulting in medium-dependant compression. On compressing MOF-5 (Zn4O(BDC)3) using diethylformamide as a penetrating medium, the framework was shown to have an increased resistance to compression, becoming amorphous several orders of magnitude higher in pressure than observed on grinding the sample.[3] Here we present a high-pressure x-ray diffraction study on the UiO-based MOF UiO-67, and several new synthesised derivatives built from same metal node but with altered organic linkers, allowing us to study in a systematic way, the mechanical stability of the MOF, and its pressure dependence on both the linker, and pressure medium.


2020 ◽  
Author(s):  
Stephen Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

We report on the results of a thorough <i>in situ</i> synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated Ce(IV)-based metal-organic frameworks (MOFs), analogues of the already well investigated Zr(IV)-based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as building blocks, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds <i>in situ</i> in a wide range of conditions, varying parameters such as temperature, amount of the protonation modulator nitric acid (HNO<sub>3</sub>) and amount of the coordination modulator acetic acid (AcOH). When only HNO<sub>3</sub> is present in the reaction environment, F4_MIL-140A(Ce) is obtained as a pure phase. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C, whereas the modulator influences nucleation and crystal growth to a similar extent. Upon addition of AcOH to the system, alongside HNO<sub>3</sub>, mixed-phased products, consisting of F4_MIL-140A(Ce) and F4_UiO-66(Ce), are obtained. In these conditions, F4_UiO-66(Ce) is always formed faster and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate determining step. An increase in the amount of HNO<sub>3</sub> slows down both nucleation and growth rates for F4_MIL-140A(Ce), whereas nucleation is mainly affected for F4_UiO-66(Ce). In addition, a higher amount HNO<sub>3</sub> favours the formation of F4_MIL-140A(Ce). Similarly, increasing the amount of AcOH leads to slowing down of the nucleation and growth rate, but favours the formation of F4_UiO-66(Ce). The pure F4_UiO-66(Ce) phase could also be obtained when using larger amounts of AcOH in the presence of minimal HNO<sub>3</sub>. Based on these <i>in situ</i> results, a new optimised route to achieving a pure, high quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.


Author(s):  
Michael T. Huxley ◽  
Campbell J. Coghlan ◽  
Witold M. Bloch ◽  
Alexandre Burgun ◽  
Christian J. Doonan ◽  
...  

Post-synthetic modification of metal–organic frameworks (MOFs) facilitates a strategic transformation of potentially inert frameworks into functionalized materials, tailoring them for specific applications. In particular, the post-synthetic incorporation of transition-metal complexes within MOFs, a process known as ‘metalation’, is a particularly promising avenue towards functionalizing MOFs. Herein, we describe the post-synthetic metalation of a microporous MOF with various transition-metal nitrates. The parent framework, 1 , contains free-nitrogen donor chelation sites, which readily coordinate metal complexes in a single-crystal to single-crystal transformation which, remarkably, can be readily monitored by X-ray crystallography. The presence of an open void surrounding the chelation site in 1 prompted us to investigate the effect of the MOF pore environment on included metal complexes, particularly examining whether void space would induce changes in the coordination sphere of chelated complexes reminiscent of those found in the solution state. To test this hypothesis, we systematically metalated 1 with first-row transition-metal nitrates and elucidated the coordination environment of the respective transition-metal complexes using X-ray crystallography. Comparison of the coordination sphere parameters of coordinated transition-metal complexes in 1 against equivalent solid- and solution-state species suggests that the void space in 1 does not markedly influence the coordination sphere of chelated species but we show notably different post-synthetic metalation outcomes when different solvents are used. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’.


2017 ◽  
Vol 70 (5) ◽  
pp. 461 ◽  
Author(s):  
In-Hyeok Park ◽  
Yunji Kang ◽  
Eunji Lee ◽  
Anjana Chanthapally ◽  
Shim Sung Lee ◽  
...  

Three double pillared-layer CoII metal–organic frameworks (MOFs) with a pcu topology of a long, conformationally flexible, dipyridyl spacer ligand, 1,4-bis[2-(4-pyridyl)ethenyl]benzene (bpeb), and aromatic dicarboxylates (1,4-benzenedicarboxylate (bdc), 2,6-naphthalenedicarboxylate (ndc), and biphenyl-4,4′-dicarboxylate (bpdc)) have been synthesised and structurally characterised by X-ray crystallography. The MOFs are denoted as [Co2(bpeb)2(bdc)2]·DMF·3H2O (1), [Co2(bpeb)2(ndc)2]·1.75DMF·3.75H2O (2), and [Co2(bpeb)2(bpdc)2]·3.5DMF·4H2O (3). In the dinuclear repeating unit, four carboxylates are bonded to two CoII atoms forming a (4,4) layer structure. The axial positions are occupied by bpeb ligands. Of these, 1 and 2 have 2-fold interpenetration, whereas 3 displays 3-fold interpenetration. The two bpeb space ligands in 1 have trans,trans,trans and trans,cis,trans conformations. In contrast, the bpeb ligands in 2 and 3 have a trans,cis,trans conformation. Although the olefin groups in two adjacent bpeb ligands, as the double pillars in 2 and 3, satisfy the conditions for photo-dimerisation to occur, they are photo-inactive. The conformational changes of bpeb, bonding modes of the dicarboxylates, and pore sizes in these double pillared-layer compounds have been discussed.


Author(s):  
Elliot J. Carrington ◽  
Iñigo J. Vitórica-Yrezábal ◽  
Lee Brammer

Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors.In situcrystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathratesetc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context ofin situcrystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules.


Data in Brief ◽  
2019 ◽  
Vol 25 ◽  
pp. 104280 ◽  
Author(s):  
Aram L. Bugaev ◽  
Alina A. Skorynina ◽  
Elizaveta G. Kamyshova ◽  
Kirill A. Lomachenko ◽  
Alexander A. Guda ◽  
...  

Author(s):  
Shunlin Zhang ◽  
Sheng Gao ◽  
Xin Wang ◽  
Xin He ◽  
Jing Zhao ◽  
...  

Bifunctional ligands containing both carboxylic and sulfonate groups can adopt versatile coordination modes to produce novel metal–organic frameworks (MOFs) with high-dimensional networks and interesting topologies. Using 2,2′-disulfonylbiphenyl-4,4′-dicarboxylic acid (H4 L) as a linker and 4,4′-bipyridine (4,4′-bpy) as a co-ligand, two novel 3D CuII MOFs, {[Cu2(L)(4,4′-bpy)2.5(H2O)]·1.7H2O} n , (1), and {[Cu2(L)(4,4′-bpy)2]·DMA·3H2O} n , (2), have been synthesized and structurally characterized by X-ray crystallography (DMA is N,N-dimethylacetamide). MOF (1) shows an unprecedented trinodal 4,4,5-connected topology network with the Schläfli symbol (4.62.73)(43.65.7.8)(6.73.8.10), while MOF (2) indicates a binodal 4,6-connected fsc network with the Schläfli symbol (44.610.8)(44.62). MOFs (1) and (2) were further characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and thermogravimetric analysis. MOF (1) shows a high water and chemical stability. The proton conductivity of (1) and CO2 adsorption of (2) were also investigated.


Sign in / Sign up

Export Citation Format

Share Document