Calculation of Structural Parameters in Isostructural Series: the Kieserite Group

1998 ◽  
Vol 54 (5) ◽  
pp. 564-567 ◽  
Author(s):  
S. Aleksovska ◽  
V. M. Petrusevski ◽  
B. Soptrajanov

In order to demonstrate the possibility of predicting the structural parameters of members in a sequence of isostructural compounds, the kieserite group isotypes (with the general formula M II XO4.H2O) were chosen since a number of them have accurately refined crystal structures. The unit-cell parameters and the fractional atomic coordinates were shown to vary linearly with both cation and anion size. This makes it possible to calculate the structural parameters of a particular member, taking into account only the effective ionic radii of the constituent atoms. Agreement between the calculated and experimentally refined (by X-ray diffraction) structural parameters is good. The cell constants and atomic coordinates of FeSeO4.H2O, iron selenate monohydrate, are predicted in this way.

2011 ◽  
Vol 26 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Sytle M. Antao ◽  
Ishmael Hassan

The crystal structures of marialite (Me6) from Badakhshan, Afghanistan and meionite (Me93) from Mt. Vesuvius, Italy were obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements. Their structures were refined in space groups I4/m and P42/n, and similar results were obtained. The Me6 sample has a formula Ca0.24Na3.37K0.24[Al3.16Si8.84O24]Cl0.84(CO3)0.15, and its unit-cell parameters are a=12.047555(7), c=7.563210(6) Å, and V=1097.751(1) Å3. The average ⟨T1-O⟩ distances are 1.599(1) Å in I4/m and 1.600(2) Å in P42/n, indicating that the T1 site contains only Si atoms. In P42/n, the average distances of ⟨T2-O⟩=1.655(2) and ⟨T3-O⟩=1.664(2) Å are distinct and are not equal to each other. However, the mean ⟨T2,3-O⟩=1.659(2) Å in P42/n and is identical to the ⟨T2′-O⟩=1.659(1) Å in I4/m. The ⟨M-O⟩ [7]=2.754(1) Å (M site is coordinated to seven framework O atoms) and M-A=2.914(1) Å; these distances are identical in both space groups. The Me93 sample has a formula of Na0.29Ca3.76[Al5.54Si6.46O24]Cl0.05(SO4)0.02(CO3)0.93, and its unit-cell parameters are a=12.19882(1), c=7.576954(8) Å, and V=1127.535(2) Å3. A similar examination of the Me93 sample also shows that both space groups give similar results; however, the C–O distance is more reasonable in P42/n than in I4/m. Refining the scapolite structure near Me0 or Me100 in I4/m forces the T2 and T3 sites (both with multiplicity 8 in P42/n) to be equivalent and form the T2′ site (with multiplicity 16 in I4/m), but ⟨T2-O⟩ is not equal to ⟨T3-O⟩ in P42/n. Using different space groups for different regions across the series implies phase transitions, which do not occur in the scapolite series.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 947 ◽  
Author(s):  
M. Zaman ◽  
Sytle Antao

This study investigates the variations of structural parameters and chemistry of a partially metamict and seven detrital zircon samples from different localities using single-crystal X-ray diffraction, synchrotron high-resolution powder X-ray diffraction, and electron-probe micro-analysis techniques. The unit-cell parameters for the eight zircon samples vary linearly with increasing unit-cell volume, V. A zircon sample from the Canadian Arctic Islands has the smallest unit-cell parameters, bond distances, ideal stoichiometric composition, unaffected by α-radiation damage, and is chemically pure. A zircon sample from Jemaa, Nigeria has the largest unit-cell parameters because of the effect of α-radiation doses received over a long time (2384 Ma). All the samples show good correlations between Zr and Si apfu (atom per formula unit) versus unit-cell volume, V. The α-radiation doses in the samples are lower than ~3.5 × 1015 α-decay events/mg. Substitutions of other cations at the Zr and Si sites control the variations of the structural parameters. Relatively large unit-cell parameters and bond distances occur because the Zr site accommodates other cations that have larger ionic radii than the Zr atom. Geological age increases the radiation doses in zircon and it is related to V.


1994 ◽  
Vol 58 (392) ◽  
pp. 425-447 ◽  
Author(s):  
Kenshi Kuma ◽  
Akira Usui ◽  
William Paplawsky ◽  
Benjamin Gedulin ◽  
Gustaf Arrhenius

AbstractThe crystal structures of synthetic 7 Å and 10 Å manganates, synthetic birnessite and buserite, substituted by mono- and divalent cations were investigated by X-ray and electron diffractions. The monoclinic unit cell parameters of the subcell of lithium 7 Å manganate, which is one of the best ordered manganates, were obtained by computing the X-ray powder diffraction data: a = 5.152 Å, b = 2.845 Å, c = 7.196 Å, β = 103.08°. On the basis of the indices obtained by computing the X-ray diffraction data of Li 7 Å manganate, monovalent Na, K and Cs and divalent Be, Sr and Ba 7 Å manganates were interpreted as the same monoclinic structure with β = 100–103° as that of Li 7 Å manganate, from their X-ray diffraction data. In addition, divalent Mg, Ca and Ni 10 Å manganates were also interpreted as the same monoclinic crystal system with β = 90–94° The unit cell parameters, especially a, c and β, change possibly with the type of substituent cation probably because of the different ionic radius, hydration energy and molar ratio of substituent cation to manganese. However, these diffraction data, except for those of Sr and Ba 7 Å and Ca and Ni 10 Å manganates, reveal only some parts of the host manganese structure with the edge-shared [MnO6] octahedral layer. On the other hand, one of the superlattice reflections observed in the electron diffractions was found in the X-ray diffraction lines for heavier divalent cations Sr and Ba 7 Å and Ca and Ni 10 Å manganates. The reflection presumably results from the substituent cation position in the interlayer which is associated with the vacancies in the edge-shared [MnO6] layer and indicates that the essential vacancies are linearly arranged parallel to the b-axis. Furthermore, the characteristic superlattice reflection patterns for several cations, Li, Mg, Ca, Sr, Ba and Ni, manganates were interpreted that the substituent cations are regularly distributed in the interlayer according to the exchange percentage of substituent cation to Na+. In contrast, the streaking in the a-direction observed strongly in the electron diffractions for heavier monovalent cations, K and Cs, manganates probably results from the disordering of their cations in the a-direction in the interlayer.


2003 ◽  
Vol 18 (2) ◽  
pp. 159-161 ◽  
Author(s):  
N. P. Vyshatko ◽  
V. V. Kharton ◽  
A. L. Shaula ◽  
F. M. B. Marques

The crystal structures of LaCo0.5Ni0.5O3−δ and LaCo0.5Fe0.5O3−δ solid solutions, studied by powder X-ray diffraction, were found to be rhombohedral perovskite. The unit cell parameters in the hexagonal setting are a=5.491(6) Å and c=13.231(3) Å for LaCo0.5Fe0.5O3−δ, and a=5.464(4) Å and c=13.125(3) Å for LaCo0.5Ni0.5O3−δ. The space group is R3c (No. 167).


2012 ◽  
Vol 27 (3) ◽  
pp. 179-183 ◽  
Author(s):  
Sytle M. Antao

The crystal structure of tin (II) sulphate, SnSO4, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO4 are a = 7.12322(1), b = 8.81041(1), c = 5.32809(1) Å, and V = 334.383(1) Å3. The average 〈Sn–O〉 [12] distance is 2.9391(4) Å. However, the Sn2+cation has a pyramidal [3]-coordination to O atoms and the average 〈Sn–O〉 [3] = 2.271(1) Å. If Sn is considered as [12]-coordinated, SnSO4 has a structure similar to barite, BaSO4, and its structural parameters are intermediate between those of BaSO4 and PbSO4. The tetrahedral SO4 group has an average 〈S–O〉 [4] = 1.472(1) Å in SnSO4. Comparing SnSO4 with the isostructural SrSO4, PbSO4, and BaSO4, several well-defined trends are observed. The radii, rM, of the M2+(=Sr, Pb, Sn, and Ba) cations and average 〈S–O〉 distances vary linearly with V because of the effective size of the M2+cation. Based on the trend for the isostructural sulphates, the average 〈Sn–O〉 [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn2+cation.


2020 ◽  
Vol 76 (12) ◽  
pp. 1871-1875
Author(s):  
Saehwa Chong ◽  
Samuel Perry ◽  
Brian J. Riley ◽  
Zayne J. Nelson

Six potassium rare-earth molybdates KRE(MoO4)2 (RE = Tb, Dy, Ho, Er, Yb, and Lu) were synthesized by flux-assisted growth in K2Mo3O10. The crystal structures were determined using single-crystal X-ray diffraction data. The synthesized molybdates crystallize with the orthorhombic Pbcn space group (No. 60). Trendlines for unit-cell parameters were calculated using data from the current study. The unit-cell parameters a and c increase linearly whereas b decreases with larger RE cations, based on crystal radii. The unit-cell volumes increase linearly and the densities decrease linearly with larger RE cations. The average distances between the RE cations and the nearest O atoms increase with larger cations whereas the average distances of Mo—O and K—O do not show specific trends.


Author(s):  
Saehwa Chong ◽  
Brian J. Riley ◽  
Zayne J. Nelson ◽  
Samuel N. Perry

Three huntite-type aluminoborates of stoichiometry REAl3(BO3)4 (RE = Tb, Dy and Ho), namely, terbium/dysprosium/holmium trialuminium tetrakis(borate), were synthesized by slow cooling within a K2Mo3O10 flux with spontaneous crystallization. The crystal structures were determined using single-crystal X-ray diffraction (SC-XRD) data. The synthesized borates are isostructural to the huntite [CaMg3(CO3)4] structure and crystallized within the trigonal R32 space group. The structural parameters were compared to literature data of other huntite REAl3(BO3)4 crystals within the R32 space group. All three borates fit well into the trends calculated from the literature data. The unit-cell parameters and volumes increase linearly with larger RE cations whereas the densities decrease. All of the crystals studied were refined as inversion twins.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2012 ◽  
Vol 76 (4) ◽  
pp. 963-973 ◽  
Author(s):  
G. O. Lepore ◽  
T. Boffa Ballaran ◽  
F. Nestola ◽  
L. Bindi ◽  
D. Pasqual ◽  
...  

AbstractAmbient temperature X-ray diffraction data were collected at different pressures from two crystals of β-As4S4, which were made by heating realgar under vacuum at 295ºC for 24 h. These data were used to calculate the unit-cell parameters at pressures up to 6.86 GPa. Above 2.86 GPa, it was only possible to make an approximate measurement of the unit-cell parameters. As expected for a crystal structure that contains molecular units held together by weak van der Waals interactions, β-As4S4 has an exceptionally high compressibility. The compressibility data were fitted to a third-order Birch–Murnaghan equation of state with a resulting volume V0 = 808.2(2) Å3, bulk modulus K0 = 10.9(2) GPa and K' = 8.9(3). These values are extremely close to those reported for the low-temperature polymorph of As4S4, realgar, which contains the same As4S4 cage-molecule. Structural analysis showed that the unit-cell contraction is due mainly to the reduction in intermolecular distances, which causes a substantial reduction in the unit-cell volume (∼21% at 6.86 GPa). The cage-like As4S4 molecules are only slightly affected. No phase transitions occur in the pressure range investigated.Micro-Raman spectra, collected across the entire pressure range, show that the peaks associated with As–As stretching have the greatest pressure dependence; the S–As–S bending frequency and the As–S stretching have a much weaker dependence or no variation at all as the pressure increases; this is in excellent agreement with the structural data.


Author(s):  
Fang Lu ◽  
Bei Zhang ◽  
Yong Liu ◽  
Ying Song ◽  
Gangxing Guo ◽  
...  

Phytases are phosphatases that hydrolyze phytates to less phosphorylatedmyo-inositol derivatives and inorganic phosphate. β-Propeller phytases, which are very diverse phytases with improved thermostability that are active at neutral and alkaline pH and have absolute substrate specificity, are ideal substitutes for other commercial phytases. PhyH-DI, a β-propeller phytase fromBacillussp. HJB17, was found to act synergistically with other single-domain phytases and can increase their efficiency in the hydrolysis of phytate. Crystals of native and selenomethionine-substituted PhyH-DI were obtained using the vapour-diffusion method in a condition consisting of 0.2 Msodium chloride, 0.1 MTris pH 8.5, 25%(w/v) PEG 3350 at 289 K. X-ray diffraction data were collected to 3.00 and 2.70 Å resolution, respectively, at 100 K. Native PhyH-DI crystals belonged to space groupC121, with unit-cell parametersa = 156.84,b = 45.54,c = 97.64 Å, α = 90.00, β = 125.86, γ = 90.00°. The asymmetric unit contained two molecules of PhyH-DI, with a corresponding Matthews coefficient of 2.17 Å3 Da−1and a solvent content of 43.26%. Crystals of selenomethionine-substituted PhyH-DI belonged to space groupC2221, with unit-cell parametersa = 94.71,b= 97.03,c= 69.16 Å, α = β = γ = 90.00°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.44 Å3 Da−1and a solvent content of 49.64%. Initial phases for PhyH-DI were obtained from SeMet SAD data sets. These data will be useful for further studies of the structure–function relationship of PhyH-DI.


Sign in / Sign up

Export Citation Format

Share Document