scholarly journals Structure and thermal behavior of the new superprotonic conductor Cs2(HSO4)(H2PO4)

1999 ◽  
Vol 55 (6) ◽  
pp. 937-946 ◽  
Author(s):  
Calum R. I. Chisholm ◽  
Sossina M. Haile

Ongoing studies of the CsHSO4–CsH2PO4 system, aimed at developing novel proton conducting solids, resulted in the new compound Cs2(HSO4)(H2PO4) (dicesium hydrogensulfate dihydrogenphosphate). Single-crystal X-ray diffraction (performed at room temperature) revealed Cs2(HSO4)(H2PO4) to crystallize in space group P21/n with lattice parameters a = 7.856 (8), b = 7.732 (7), c = 7.827 (7) Å, and β = 99.92 (4)°. The compound has a unit-cell volume of 468.3 (8) Å3 and two formula units per cell, giving a calculated density of 3.261 Mg m−3. Six non-H atoms and two H atoms were located in the asymmetric unit, with SO4 and PO4 groups randomly arranged on the single tetrahedral anion site. Refinement using all observed reflections yielded weighted residuals of 0.0890 and 0.0399 based on F 2 and F values, respectively. Anisotropic temperature factors were employed for all six non-H atoms and fixed isotropic temperature factors for the two H atoms. The structure contains zigzag chains of hydrogen-bonded anion tetrahedra that extend in the [010] direction. Each tetrahedron is additionally linked to a tetrahedron in a neighboring chain to give a planar structure with hydrogen-bonded sheets lying parallel to (1¯01). Thermal analysis of the superprotonic transition in Cs2(HSO4)(H2PO4) showed that the transformation to the high-temperature phase occurs by a two-step process. The first is a sharp transition at 334 K and the second a gradual transition from 342 to 378 K. The heat of transformation for the entire process (∼330–382 K) is 44 ± 2 J g−1. Thermal decomposition of Cs2(HSO4)(H2PO4) takes place at much higher temperatures, with an onset of approximately 460 K.

1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

2014 ◽  
Vol 10 (7) ◽  
pp. 2881-2893
Author(s):  
Khaled JAOUADI ◽  
Tahar MHIRI ◽  
Nabil ZOUARI

Solid-solution studies in the ternary Rb2O – Bi2O3 – P2O5 system, carried out in a search for inorganic materials have a considerable interest mainly for their optical properties, specifically in laser technology, yielded the new compound RbBi(PO3)4. Single-crystal X-ray measurement revealed that RbBi(PO3)4 crystallizes in space group P21/c with a structural type IV and has lattice parameters a = 10.430, b = 8.984, c = 12.967 Å,  = 126.1°, Z = 4 and V = 981.6 Å3. The all eighteen atoms were located in the asymmetric unit. Refinement using anisotropic temperature factors for all atoms yielded weighted residuals based on F and F2 values, respectively, of R1 = 0.0131 and WR2 = 0.0252 for all observed reflections. The atomic arrangement can be described as a long chain polyphosphate organization, helical ribbons (PO3)n. Two types of infinite chains, with a period of eight PO4 tetrahedra run along the longest unit-cell directions. Infrared and Raman spectra at room temperature, were investigated, show clearly some characteristics bands of infinite chains structure of PO4 tetrahedra linked by a bridge oxygen.


2018 ◽  
Vol 24 (S1) ◽  
pp. 2248-2249
Author(s):  
M. Ramírez-Cardona ◽  
M.P. Falcón-León ◽  
G. Luis-Raya ◽  
G. Mejía-Hernández ◽  
R. Arceo ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 525
Author(s):  
Martin Kubli ◽  
Matteo Savoini ◽  
Elsa Abreu ◽  
Bulat Burganov ◽  
Gabriel Lantz ◽  
...  

We investigate the structural dynamics of the incommensurately modulated phase of Sn 2P 2Se 6 by means of time-resolved X-ray diffraction following excitation by an optical pump. Tracking the incommensurable distortion in the time domain enables us to identify the transport effects leading to a complete disappearance of the incommensurate phase over the course of 100 ns. These observations suggest that a thin surface layer of the high-temperature phase forms quickly after photo-excitation and then propagates into the material with a constant velocity of 3.7 m/s. Complementary static structural measurements reveal previously unreported higher-order satellite reflection in the incommensurate phase. These higher-order reflections are attributed to cubic vibrational terms in the Hamiltonian.


1966 ◽  
Vol 44 (8) ◽  
pp. 939-943 ◽  
Author(s):  
A. K. Das ◽  
I. D. Brown

(NH4)2TeBr6 and Cs2TeBr6 crystals have the cubic K2PtCl6 structure with space group: [Formula: see text] with a0 = 10.728 ± 0.003 Å and 10.918 ± 0.002 Å respectively. The positional coordinate of the bromine atom, and the anisotropic temperature factors of all atoms in the unit cell, have been refined for both crystals by a full matrix least-squares analysis of the three dimensional X-ray diffraction data (R = 0.08). The Te—Br distance, corrected for probable thermal motions of atoms forming the bond, is 2.70 ± 0.01 Å in both crystals.


1999 ◽  
Vol 77 (12) ◽  
pp. 2105-2118 ◽  
Author(s):  
Lily Yeo ◽  
Kenneth DM Harris

Periodic structural properties of the 2-bromotetradecane/urea inclusion compound have been investigated as a function of temperature. Differential scanning calorimetry between 298 and 98 K identified three well-defined regimes, denoted the high-, intermediate-, and low-temperature phases. The structural properties of each phase (at 293, 207, and 142 K, respectively) have been investigated by single crystal X-ray diffraction. In the high-temperature phase, the inclusion compound has the hexagonal urea tunnel structure (P6122) characteristic of the conventional urea inclusion compounds, with substantial orientational disorder of the guest molecules. In the intermediate-temperature phase, the symmetry is lowered to orthorhombic (C2221), although the host structure remains close to the hexagonal tunnel structure of the high-temperature phase and there is no clear evidence for increased orientational ordering of the guest molecules. In the low-temperature phase, the urea tunnel structure is monoclinic (P21), and is based on a 2 × 2 × 1 supercell of the hexagonal cell of the high-temperature structure. There are four independent types of tunnel, three of which are strongly distorted from hexagonal geometry. Within these distorted tunnels, there is a comparatively narrow distribution of guest molecule orientations, which correlate well with the observed distortions of the tunnels. The 2-bromotetradecane/urea inclusion compound highlights several issues of wider relevance concerning the structural properties of solid inclusion compounds.Key words: urea inclusion compounds, X-ray diffraction, phase transitions, chiral recognition, incommensurate solid, 2-bromotetradecane/urea.


2008 ◽  
Vol 64 (5) ◽  
pp. 558-566 ◽  
Author(s):  
Anna Gagor ◽  
Maciej Wojtaś ◽  
Adam Pietraszko ◽  
Ryszard Jakubas

[(CH3)3PH]3[Sb2Cl9] experiences four phase transitions which were found by means of calorimetry, thermogravimetry and X-ray diffraction. The crystal structure was solved in the space group P63/mmc at 382 K (phase I), Pnam at 295 K (phase II) and Pna21 at 175 K (phase V). We observed an unusual increase in symmetry from the monoclinic to the orthorhombic form at the IV\rightarrowV transition. The parent hexagonal high-temperature phase I consists of highly disordered [(CH3)3PH]+ cations and [Sb2Cl9]3− anions with an octahedral environment of SbIII. The transition from phases I to II is associated with the ordering of [(CH3)3PH]+ cations. Moreover, the successive transformations from phases I to V are related to the change in the arrangement of Cl atoms in [Sb2Cl9]3− anions from the discrete `face-sharing bioctahedra' (phase I) to two corner-sharing square pyramids. A mechanism for the phase transitions is proposed. It is observed that weak C—H...Cl interactions are responsible for the structure arrangement in low-temperature phases.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 160-170
Author(s):  
Dirk Groke ◽  
Shi-Qi Dou ◽  
Alarich Weiss

AbstractThe temperature dependence of 35Cl NQR frequencies and the phase transition behaviour of chloroacetanilides (N-[2,6-dichlorophenyl]-2-chloroacetamide, -2,2-dichloroacetamide, -2,2,2-trichloroacetamide) were investigated. The crystal structure determination of N-[2,6-dichlorophenyl]- 2-chloroacetamide leads to the following: a = 1893.8 pm, b = 1110.7 pm, c = 472.1 pm, space group P212121 = D24 with Z = 4 molecules per unit cell. The arrangement of the molecules and their geometry is comparable to the high temperature phase of the acetyl compound N-[2,6-dichlorophenyl]- acetamide. For N-[2,6-diclorophenyl]-2,2,2-trichloroacetamide it was found: a = 1016.6 pm, b = 1194.3 pm, c = 1006.7 pm, ß= 101.79°, space group P21/c = C52h, Z = 4. The structure is similar to the low temperature phase of N-[2,6-dichlorophenyl]-acetamide. Parallelism between the temperature dependence of the 35C1 NQR lines of the CCl3 group and the X-ray diffraction results concerning the different behaviour of the chlorine atoms was observed. The structures of the compounds show intermolecular hydrogen bonding of the N - H • • • O - C type. The phenyl group and the HNCO function are nearly planar. A bleaching out of several 35Cl NQR lines at a temperature far below the melting point of the substances was observed. The different types of chlorine atoms (aromatic, chloromethyl) can be distinguished by their temperature coefficients of the 35Cl NQR frequencies. All the resonances found show normal "Bayer" temperature behaviour. N-[2,6-dichlorophenyl]-2,2-diehloroacetamide shows several solid phases. One stable low temperature phase and an instable high temperature phase (at room temperature) were observed. The different phases were detected by means of 35Cl NQR spectroscopy and thermal analysis


2001 ◽  
Vol 16 (8) ◽  
pp. 2251-2255 ◽  
Author(s):  
J. W. Nowok ◽  
J. P. Kay ◽  
R. J. Kulas

The linear thermal-expansion coefficients of yttrium silicate Y2SiO5, [Y2(SiO4)O] were measured in the temperature range from 20 to 1400 °C using x-ray diffraction. The anomalous behavior of thermal expansion was observed above Tc = 850 °C and was attributed to the displacive phase transformation. The transformation was reversible and resulted from the local order °C the compositional disorder and local fluctuation in the elastic free energy constrained a secondary transformation related to the polymorphic twin transformation. This created an additional peak in x-ray diffraction patterns at 2 's intensity. The characteristic of phase transformation both on heating and on cooling of the sample was also investigated using the differential thermal analysis method. The thermogravimetric technique did not indicate on a change of weight at Tc.


Sign in / Sign up

Export Citation Format

Share Document