scholarly journals Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis

2013 ◽  
Vol 69 (10) ◽  
pp. 1876-1888 ◽  
Author(s):  
Fabienne Furt ◽  
William J. Allen ◽  
Joshua R. Widhalm ◽  
Peter Madzelan ◽  
Robert C. Rizzo ◽  
...  

The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacteriumSynechocystis(Slr0204) and the flowering plantArabidopsis thaliana(AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases fromPseudomonasandArthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.

2010 ◽  
Vol 54 (10) ◽  
pp. 4343-4351 ◽  
Author(s):  
Jean-Denis Docquier ◽  
Manuela Benvenuti ◽  
Vito Calderone ◽  
Magdalena Stoczko ◽  
Nicola Menciassi ◽  
...  

ABSTRACT Metallo-β-lactamases (MBLs) are important enzymatic factors in resistance to β-lactam antibiotics that show important structural and functional heterogeneity. BJP-1 is a subclass B3 MBL determinant produced by Bradyrhizobium japonicum that exhibits interesting properties. BJP-1, like CAU-1 of Caulobacter vibrioides, overall poorly recognizes β-lactam substrates and shows an unusual substrate profile compared to other MBLs. In order to understand the structural basis of these properties, the crystal structure of BJP-1 was obtained at 1.4-Å resolution. This revealed significant differences in the conformation and locations of the active-site loops, determining a rather narrow active site and the presence of a unique N-terminal helix bearing Phe-31, whose side chain binds in the active site and represents an obstacle for β-lactam substrate binding. In order to probe the potential of sulfonamides (known to inhibit various zinc-dependent enzymes) to bind in the active sites of MBLs, the structure of BJP-1 in complex with 4-nitrobenzenesulfonamide was also obtained (at 1.33-Å resolution), thereby revealing the mode of interaction of these molecules in MBLs. Interestingly, sulfonamide binding resulted in the displacement of the side chain of Phe-31 from its hydrophobic binding pocket, where the benzene ring of the molecule is now found. These data further highlight the structural diversity shown by MBLs but also provide interesting insights in the structure-function relationships of these enzymes. More importantly, we provided the first structural observation of MBL interaction with sulfonamides, which might represent an interesting scaffold for the design of MBL inhibitors.


1975 ◽  
Vol 53 (7) ◽  
pp. 747-757 ◽  
Author(s):  
Graham J. Moore ◽  
N. Leo Benoiton

The initial rates of hydrolysis of Bz-Gly-Lys and Bz-Gly-Phe by carboxypeptidase B (CPB) are increased in the presence of the modifiers β-phenylpropionic acid, cyclohexanol, Bz-Gly, and Bz-Gly-Gly. The hydrolysis of the tripeptide Bz-Gly-Gly-Phe is also activated by Bz-Gly and Bz-Gly-Gly, but none of these modifiers activate the hydrolysis of Bz-Gly-Gly-Lys, Z-Leu-Ala-Phe, or Bz-Gly-phenyllactic acid by CPB. All modifiers except cyclohexanol display inhibitory modes of binding when present in high concentration.Examination of Lineweaver–Burk plots in the presence of fixed concentrations of Bz-Gly has shown that activation of the hydrolysis of neutral and basic peptides by CPB, as reflected in the values of the extrapolated parameters, Km(app) and keat, occurs by different mechanisms. For Bz-Gly-Gly-Phe, activation occurs because the enzyme–modifier complex has a higher affinity than the free enzyme for the substrate, whereas activation of the hydrolysis of Bz-Gly-Lys derives from an increase in the rate of breakdown of the enzyme–substrate complex to give products.Cyclohexanol differs from Bz-Gly and Bz-Gly-Gly in that it displays no inhibitory mode of binding with any of the substrates examined, activates only the hydrolysis of dipeptides by CPB, and has a greater effect on the hydrolysis of the basic dipeptide than on the neutral dipeptide. Moreover, when Bz-Gly-Lys is the substrate, cyclohexanol activates its hydrolysis by CPB by increasing both the enzyme–substrate binding affinity and the rate of the catalytic step, an effect different from that observed when Bz-Gly is the modifier.The anomalous kinetic behavior of CPB is remarkably similar to that of carboxypeptidase A, and is a good indication that both enzymes have very similar structures in and around their respective active sites. A binding site for activator molecules down the cleft of the active site is proposed for CPB to explain the observed kinetic behavior.


2019 ◽  
Vol 116 (52) ◽  
pp. 26571-26579 ◽  
Author(s):  
Jeffrey Skolnick ◽  
Hongyi Zhou ◽  
Mu Gao

Living systems have chiral molecules, e.g., native proteins that almost entirely contain L-amino acids. How protein homochirality emerged from a background of equal numbers of L and D amino acids is among many questions about life’s origin. The origin of homochirality and its implications are explored in computer simulations examining the stability and structural and functional properties of an artificial library of compact proteins containing 1:1 (termed demi-chiral), 3:1, and 1:3 ratios of D:L and purely L or D amino acids generated without functional selection. Demi-chiral proteins have shorter secondary structures and fewer internal hydrogen bonds and are less stable than homochiral proteins. Selection for hydrogen bonding yields a preponderance of L or D amino acids. Demi-chiral proteins have native global folds, including similarity to early ribosomal proteins, similar small molecule ligand binding pocket geometries, and many constellations of L-chiral amino acids with a 1.0-Å RMSD to native enzyme active sites. For a representative subset containing 550 active site geometries matching 457 (2) 4-digit (3-digit) enzyme classification (E.C.) numbers, native active site amino acids were generated at random for 472 of 550 cases. This increases to 548 of 550 cases when similar residues are allowed. The most frequently generated sequences correspond to ancient enzymatic functions, e.g., glycolysis, replication, and nucleotide biosynthesis. Surprisingly, even without selection, demi-chiral proteins possess the requisite marginal biochemical function and structure of modern proteins, but were thermodynamically less stable. If demi-chiral proteins were present, they could engage in early metabolism, which created the feedback loop for transcription and cell formation.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5053
Author(s):  
Alina K. Bakunova ◽  
Alena Yu. Nikolaeva ◽  
Tatiana V. Rakitina ◽  
Tatiana Y. Isaikina ◽  
Maria G. Khrenova ◽  
...  

Among industrially important pyridoxal-5’-phosphate (PLP)-dependent transaminases of fold type IV D-amino acid transaminases are the least studied. However, the development of cascade enzymatic processes, including the synthesis of D-amino acids, renewed interest in their study. Here, we describe the identification, biochemical and structural characterization of a new D-amino acid transaminase from Haliscomenobacter hydrossis (Halhy). The new enzyme is strictly specific towards D-amino acids and their keto analogs; it demonstrates one of the highest rates of transamination between D-glutamate and pyruvate. We obtained the crystal structure of the Halhy in the holo form with the protonated Schiff base formed by the K143 and the PLP. Structural analysis revealed a novel set of the active site residues that differ from the key residues forming the active sites of the previously studied D-amino acids transaminases. The active site of Halhy includes three arginine residues, one of which is unique among studied transaminases. We identified critical residues for the Halhy catalytic activity and suggested functions of the arginine residues based on the comparative structural analysis, mutagenesis, and molecular modeling simulations. We suggested a strong positive charge in the O-pocket and the unshaped P-pocket as a structural code for the D-amino acid specificity among transaminases of PLP fold type IV. Characteristics of Halhy complement our knowledge of the structural basis of substrate specificity of D-amino acid transaminases and the sequence-structure-function relationships in these enzymes.


2021 ◽  
Author(s):  
Grishma Vadlamani ◽  
Kirill V Sukhoverkov ◽  
Joel Haywood ◽  
Karen J Breese ◽  
Mark F Fisher ◽  
...  

Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds as well as heightened regulatory scrutiny. Of the known herbicide modes of action, 6-hydroxymethyl-7,8-dihydropterin synthase (DHPS) which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics - and while still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.6 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate asulam and the antibiotics sulfacetamide and sulfamethoxazole have herbicidal as well as antibacterial activity and explore the structural basis of their potency by modelling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and that pharmacokinetic or delivery differences between plants and microbes might be the best approaches to safeguard this mode of action.


1979 ◽  
Author(s):  
R Henriksen ◽  
W Owen ◽  
M Nesheim ◽  
K Mann

Thrombin Quick (TQ) may be isolated following treatment of Prothrombin Quick [Owen, et al, Mayo Clinic Proceedings, 53: 29-33, (1978)] with Taipan venom, phospholipid and ca2+. The clotting activity of TQ with fibrinogen is 1/200 that of nornar thrombin (T). The activation of Factors V and VIII, and the aggregation of platelets by TQ occurs with an effectiveness of about 1/50 that of thrombin. when incubated with antithrombin III, both T ad TQ fom inhibitor complexes as determined by dodecylsulfate gel electropheresis. Titration of T and TQ with the fluorescent inhibitor dansylarginine-4-ethylpiperidine amide indicates an equivalent number of active sites based on protein absorption at 280 nm. However, the two enzymes may be distinquished by the decreased fluorescence enhancement observed with TQ relative to T, indicating an increased polarity in the inhibitor binding site of TQ. With the substrate benzoylarginine ethylester, TQ has a Km = 4.5 × 10-5M and kcat= 6.93 compared to Km = 4.0 × 10-5M and kcat= 17.7 for T. This indicates that the defect in TQ esterase activity is in the catalytic mechanism itself and not in substrate binding. The rate of inhibition of TQ by diisopropylphosphofluoridate is decreased. Decreased acylation and deacylation rates for TQ relative to T are observed for hydrolysis of the active site titrant 4-methykl-umbelliferyl-p-guanidinobenzoate


2003 ◽  
Vol 375 (2) ◽  
pp. 255-262 ◽  
Author(s):  
David KOMANDER ◽  
Gursant S. KULAR ◽  
Jennifer BAIN ◽  
Matthew ELLIOTT ◽  
Dario R. ALESSI ◽  
...  

PDK1 (3-phosphoinositide-dependent protein kinase-1) is a member of the AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family of protein kinases, and has a key role in insulin and growth-factor signalling through phosphorylation and subsequent activation of a number of other AGC kinase family members, such as protein kinase B. The staurosporine derivative UCN-01 (7-hydroxystaurosporine) has been reported to be a potent inhibitor for PDK1, and is currently undergoing clinical trials for the treatment of cancer. Here, we report the crystal structures of staurosporine and UCN-01 in complex with the kinase domain of PDK1. We show that, although staurosporine and UCN-01 interact with the PDK1 active site in an overall similar manner, the UCN-01 7-hydroxy group, which is not present in staurosporine, generates direct and water-mediated hydrogen bonds with active-site residues. Inhibition data from UCN-01 tested against a panel of 29 different kinases show a different pattern of inhibition compared with staurosporine. We discuss how these differences in inhibition could be attributed to specific interactions with the additional 7-hydroxy group, as well as the size of the 7-hydroxy-group-binding pocket. This information could lead to opportunities for structure-based optimization of PDK1 inhibitors.


1984 ◽  
Vol 62 (11) ◽  
pp. 1190-1197 ◽  
Author(s):  
Philip D. Bragg

The ATPase (ATP synthase) complex of Escherichia coli is composed of an extrinsic membrane protein (ECF1), which contains the active site for ATP formation and hydrolysis, and is attached to ECF0, a transmembrane protein through which protons move to or from the active site on ECF1. ECF1 is composed of five subunits (α–ε) with a stoichiometry of α3β3γδε. The stoichiometry of the three subunits (a–c) of ECF0 is probably a1b2c10–15. In addition to 3 mol tightly bound adenine nucleotide/mol ECF1, three other "exchangeable" nucleotide binding sites can be detected. These sites are still present in the α and β subunit defective ECF1 of uncA401 and uncD412 mutants, although some changes in the tightness of binding are evident. The active sites of ECF1 require normal a and p subunits and may be present at αβ subunit interfaces. Hydrolysis of ATP requires cooperative interactions between α and β subunits. At low concentrations of ATP, in the absence of added divalent cations, hydrolysis of this substrate can occur at a single site without release of the product. This is consistent with alternating or sequential site mechanisms for ATP hydrolysis or synthesis. Predictions of secondary and tertiary structures from the known primary amino acid sequences of polypeptides a, b, and c have led to the following conclusions. Polypeptide a forms six or seven transmembrane a helices. The amino-terminal sequence of polypeptide b spans the membrane, but most of the protein is exposed on the cytoplasmic surface of the membrane where it can be cleaved by proteases in vitro. Polypeptide c consists of two nonpolar membrane-spanning α helices linked by a polar segment at the cytoplasmic surface of the membrane. This loop region interacts with ECF1 or is close to the ECF1-binding site. This is shown by competition between ECF1 and antibody for binding to polypeptide c. Chemical modification of arginyl residues in the loop region of polypeptide c inhibits ECF1 binding. Protease cleavage of polypeptide b affects, but does not abolish, binding of ECF1 to ECF0. Presumably, polypeptide b interacts with ECF1 also. The individual roles of the ECF0 polypeptides in proton translocation are not clear. Mutants in any of the three polypeptides may be defective in proton translocation. However, mutant and chemical modification studies support a role for the polypeptide c oligomer in the transmembrane proton pathway.


2015 ◽  
Vol 81 (7) ◽  
pp. 2612-2624 ◽  
Author(s):  
Elena Sugrue ◽  
Nicholas J. Fraser ◽  
Davis H. Hopkins ◽  
Paul D. Carr ◽  
Jeevan L. Khurana ◽  
...  

ABSTRACTThe amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Joo Youn Lee ◽  
Ji-Sook Yun ◽  
Woo-Keun Kim ◽  
Hang-Suk Chun ◽  
Hyeonseok Jin ◽  
...  

Cdc2-like kinases (CLKs) play a crucial role in the alternative splicing of eukaryotic pre-mRNAs through the phosphorylation of serine/arginine-rich proteins (SR proteins). Dysregulation of this processes is linked with various diseases including cancers, neurodegenerative diseases, and many genetic diseases. Thus, CLKs have been regarded to have a potential as a therapeutic target and significant efforts have been exerted to discover an effective inhibitor. In particular, the small molecule CX-4945, originally identified as an inhibitor of casein kinase 2 (CK2), was further revealed to have a strong CLK-inhibitory activity. Four isoforms of CLKs (CLK1, CLK2, CLK3, and CLK4) can be inhibited by CX-4945, with the highest inhibitory effect on CLK2. This study aimed to elucidate the structural basis of the selective inhibitory effect of CX-4945 on different isoforms of CLKs. We determined the crystal structures of CLK1, CLK2, and CLK3 in complex with CX-4945 at resolutions of 2.4 Å, 2.8 Å, and 2.6 Å, respectively. Comparative analysis revealed that CX-4945 was bound in the same active site pocket of the CLKs with similar interacting networks. Intriguingly, the active sites of CLK/CX-4945 complex structures had different sizes and electrostatic surface charge distributions. The active site of CLK1 was somewhat narrow and contained a negatively charged patch. CLK3 had a protruded Lys248 residue in the entrance of the active site pocket. In addition, Ala319, equivalent to Val324 (CLK1) and Val326 (CLK2), contributed to the weak hydrophobic interactions with the benzonaphthyridine ring of CX-4945. In contrast, the charge distribution pattern of CLK2 was the weakest, favoring its interactions with benzonaphthyridine ring. Thus, the relatively strong binding affinities of CX-4945 with CLK2 are consistent with its strong inhibitory effect defined in the previous study. These results may provide insights into structure-based drug discovery processes.


Sign in / Sign up

Export Citation Format

Share Document