scholarly journals Structural Basis for the Selective Inhibition of Cdc2-Like Kinases by CX-4945

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Joo Youn Lee ◽  
Ji-Sook Yun ◽  
Woo-Keun Kim ◽  
Hang-Suk Chun ◽  
Hyeonseok Jin ◽  
...  

Cdc2-like kinases (CLKs) play a crucial role in the alternative splicing of eukaryotic pre-mRNAs through the phosphorylation of serine/arginine-rich proteins (SR proteins). Dysregulation of this processes is linked with various diseases including cancers, neurodegenerative diseases, and many genetic diseases. Thus, CLKs have been regarded to have a potential as a therapeutic target and significant efforts have been exerted to discover an effective inhibitor. In particular, the small molecule CX-4945, originally identified as an inhibitor of casein kinase 2 (CK2), was further revealed to have a strong CLK-inhibitory activity. Four isoforms of CLKs (CLK1, CLK2, CLK3, and CLK4) can be inhibited by CX-4945, with the highest inhibitory effect on CLK2. This study aimed to elucidate the structural basis of the selective inhibitory effect of CX-4945 on different isoforms of CLKs. We determined the crystal structures of CLK1, CLK2, and CLK3 in complex with CX-4945 at resolutions of 2.4 Å, 2.8 Å, and 2.6 Å, respectively. Comparative analysis revealed that CX-4945 was bound in the same active site pocket of the CLKs with similar interacting networks. Intriguingly, the active sites of CLK/CX-4945 complex structures had different sizes and electrostatic surface charge distributions. The active site of CLK1 was somewhat narrow and contained a negatively charged patch. CLK3 had a protruded Lys248 residue in the entrance of the active site pocket. In addition, Ala319, equivalent to Val324 (CLK1) and Val326 (CLK2), contributed to the weak hydrophobic interactions with the benzonaphthyridine ring of CX-4945. In contrast, the charge distribution pattern of CLK2 was the weakest, favoring its interactions with benzonaphthyridine ring. Thus, the relatively strong binding affinities of CX-4945 with CLK2 are consistent with its strong inhibitory effect defined in the previous study. These results may provide insights into structure-based drug discovery processes.

2005 ◽  
Vol 201 (3) ◽  
pp. 441-452 ◽  
Author(s):  
Hyun-Joo Nam ◽  
Florence Poy ◽  
Haruo Saito ◽  
Christin A. Frederick

CD45 is the prototypic member of transmembrane receptor-like protein tyrosine phosphatases (RPTPs) and has essential roles in immune functions. The cytoplasmic region of CD45, like many other RPTPs, contains two homologous protein tyrosine phosphatase domains, active domain 1 (D1) and catalytically impaired domain 2 (D2). Here, we report crystal structure of the cytoplasmic D1D2 segment of human CD45 in native and phosphotyrosyl peptide-bound forms. The tertiary structures of D1 and D2 are very similar, but doubly phosphorylated CD3ζ immunoreceptor tyrosine-based activation motif peptide binds only the D1 active site. The D2 “active site” deviates from the other active sites significantly to the extent that excludes any possibility of catalytic activity. The relative orientation of D1 and D2 is very similar to that observed in leukocyte common antigen–related protein with both active sites in an open conformation and is restrained through an extensive network of hydrophobic interactions, hydrogen bonds, and salt bridges. This crystal structure is incompatible with the wedge model previously suggested for CD45 regulation.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5053
Author(s):  
Alina K. Bakunova ◽  
Alena Yu. Nikolaeva ◽  
Tatiana V. Rakitina ◽  
Tatiana Y. Isaikina ◽  
Maria G. Khrenova ◽  
...  

Among industrially important pyridoxal-5’-phosphate (PLP)-dependent transaminases of fold type IV D-amino acid transaminases are the least studied. However, the development of cascade enzymatic processes, including the synthesis of D-amino acids, renewed interest in their study. Here, we describe the identification, biochemical and structural characterization of a new D-amino acid transaminase from Haliscomenobacter hydrossis (Halhy). The new enzyme is strictly specific towards D-amino acids and their keto analogs; it demonstrates one of the highest rates of transamination between D-glutamate and pyruvate. We obtained the crystal structure of the Halhy in the holo form with the protonated Schiff base formed by the K143 and the PLP. Structural analysis revealed a novel set of the active site residues that differ from the key residues forming the active sites of the previously studied D-amino acids transaminases. The active site of Halhy includes three arginine residues, one of which is unique among studied transaminases. We identified critical residues for the Halhy catalytic activity and suggested functions of the arginine residues based on the comparative structural analysis, mutagenesis, and molecular modeling simulations. We suggested a strong positive charge in the O-pocket and the unshaped P-pocket as a structural code for the D-amino acid specificity among transaminases of PLP fold type IV. Characteristics of Halhy complement our knowledge of the structural basis of substrate specificity of D-amino acid transaminases and the sequence-structure-function relationships in these enzymes.


2010 ◽  
Vol 54 (10) ◽  
pp. 4343-4351 ◽  
Author(s):  
Jean-Denis Docquier ◽  
Manuela Benvenuti ◽  
Vito Calderone ◽  
Magdalena Stoczko ◽  
Nicola Menciassi ◽  
...  

ABSTRACT Metallo-β-lactamases (MBLs) are important enzymatic factors in resistance to β-lactam antibiotics that show important structural and functional heterogeneity. BJP-1 is a subclass B3 MBL determinant produced by Bradyrhizobium japonicum that exhibits interesting properties. BJP-1, like CAU-1 of Caulobacter vibrioides, overall poorly recognizes β-lactam substrates and shows an unusual substrate profile compared to other MBLs. In order to understand the structural basis of these properties, the crystal structure of BJP-1 was obtained at 1.4-Å resolution. This revealed significant differences in the conformation and locations of the active-site loops, determining a rather narrow active site and the presence of a unique N-terminal helix bearing Phe-31, whose side chain binds in the active site and represents an obstacle for β-lactam substrate binding. In order to probe the potential of sulfonamides (known to inhibit various zinc-dependent enzymes) to bind in the active sites of MBLs, the structure of BJP-1 in complex with 4-nitrobenzenesulfonamide was also obtained (at 1.33-Å resolution), thereby revealing the mode of interaction of these molecules in MBLs. Interestingly, sulfonamide binding resulted in the displacement of the side chain of Phe-31 from its hydrophobic binding pocket, where the benzene ring of the molecule is now found. These data further highlight the structural diversity shown by MBLs but also provide interesting insights in the structure-function relationships of these enzymes. More importantly, we provided the first structural observation of MBL interaction with sulfonamides, which might represent an interesting scaffold for the design of MBL inhibitors.


2020 ◽  
Vol 295 (26) ◽  
pp. 8668-8677
Author(s):  
Daniel S. Catlin ◽  
Xinhang Yang ◽  
Brian Bennett ◽  
Richard C. Holz ◽  
Dali Liu

Cleavage of aromatic carbon–chlorine bonds is critical for the degradation of toxic industrial compounds. Here, we solved the X-ray crystal structure of chlorothalonil dehalogenase (Chd) from Pseudomonas sp. CTN-3, with 15 of its N-terminal residues truncated (ChdT), using single-wavelength anomalous dispersion refined to 1.96 Å resolution. Chd has low sequence identity (<15%) compared with all other proteins whose structures are currently available, and to the best of our knowledge, we present the first structure of a Zn(II)-dependent aromatic dehalogenase that does not require a coenzyme. ChdT forms a “head-to-tail” homodimer, formed between two α-helices from each monomer, with three Zn(II)-binding sites, two of which occupy the active sites, whereas the third anchors a structural site at the homodimer interface. The catalytic Zn(II) ions are solvent-accessible via a large hydrophobic (8.5 × 17.8 Å) opening to bulk solvent and two hydrophilic branched channels. Each active-site Zn(II) ion resides in a distorted trigonal bipyramid geometry with His117, His257, Asp116, Asn216, and a water/hydroxide as ligands. A conserved His residue, His114, is hydrogen-bonded to the Zn(II)-bound water/hydroxide and likely functions as the general acid-base. We examined substrate binding by docking chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile, TPN) into the hydrophobic channel and observed that the most energetically favorable pose includes a TPN orientation that coordinates to the active-site Zn(II) ions via a CN and that maximizes a π–π interaction with Trp227. On the basis of these results, along with previously reported kinetics data, we propose a refined catalytic mechanism for Chd-mediated TPN dehalogenation.


2016 ◽  
Vol 113 (44) ◽  
pp. 12438-12443 ◽  
Author(s):  
Min Kyung Kim ◽  
Sun Joo Oh ◽  
Byung-Gil Lee ◽  
Hyun Kyu Song

The first step of the hierarchically organized Arg/N-end rule pathway of protein degradation is deamidation of the N-terminal glutamine and asparagine residues of substrate proteins to glutamate and aspartate, respectively. These reactions are catalyzed by the N-terminal amidase (Nt-amidase) Nta1 in fungi such as Saccharomyces cerevisiae, and by the glutamine-specific Ntaq1 and asparagine-specific Ntan1 Nt-amidases in mammals. To investigate the dual specificity of yeast Nta1 (yNta1) and the importance of second-position residues in Asn/Gln-bearing N-terminal degradation signals (N-degrons), we determined crystal structures of yNta1 in the apo state and in complex with various N-degron peptides. Both an Asn-peptide and a Gln-peptide fit well into the hollow active site pocket of yNta1, with the catalytic triad located deeper inside the active site. Specific hydrogen bonds stabilize interactions between N-degron peptides and hydrophobic peripheral regions of the active site pocket. Key determinants for substrate recognition were identified and thereafter confirmed by using structure-based mutagenesis. We also measured affinities between yNta1 (wild-type and its mutants) and specific peptides, and determined KM and kcat for peptides of each type. Together, these results elucidate, in structural and mechanistic detail, specific deamidation mechanisms in the first step of the N-end rule pathway.


2012 ◽  
Vol 9 (3) ◽  
pp. 1181-1187 ◽  
Author(s):  
R. K. London Singh

This study describes the effect of anionic and cationic micelles on nucleophilic addition reaction of rosaniline hydrochloride (RH) with hydroxide under pseudo-first order condition. Strong inhibitory effect is observed due to SDS micelle, whereas CTAB catalysed the reaction. This is explained on the basis of electrostatic and hydrophobic interactions which are simultaneously operating in the reaction system. The kinetic data obtained is quantitatively analysed by applying the positive cooperativity model of enzyme catalysis. Binding constants and influence of counterions on the reaction have also been investigated.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weijie You ◽  
Wei Zheng ◽  
Sandra Weiss ◽  
Katrin F. Chua ◽  
Clemens Steegborn

AbstractMammalian Sirtuin 6 (Sirt6) is an NAD+-dependent protein deacylase regulating metabolism and chromatin homeostasis. Sirt6 activation protects against metabolic and aging-related diseases, and Sirt6 inhibition is considered a cancer therapy. Available Sirt6 modulators show insufficient potency and specificity, and even partially contradictory Sirt6 effects were reported for the plant flavone quercetin. To understand Sirt6 modulation by quercetin-based compounds, we analysed their binding and activity effects on Sirt6 and other Sirtuin isoforms and solved crystal structures of compound complexes with Sirt6 and Sirt2. We find that quercetin activates Sirt6 via the isoform-specific binding site for pyrrolo[1,2-a]quinoxalines. Its inhibitory effect on other isoforms is based on an alternative binding site at the active site entrance. Based on these insights, we identified isoquercetin as a ligand that can discriminate both sites and thus activates Sirt6 with increased specificity. Furthermore, we find that quercetin derivatives that inhibit rather than activate Sirt6 exploit the same general Sirt6 binding site as the activators, identifying it as a versatile allosteric site for Sirt6 modulation. Our results thus provide a structural basis for Sirtuin effects of quercetin-related compounds and helpful insights for Sirt6-targeted drug development.


2016 ◽  
Vol 72 (8) ◽  
pp. 976-985 ◽  
Author(s):  
Jung-Hyun Na ◽  
Sun-Shin Cha

AmpC BER is an extended substrate spectrum class C β-lactamase with a two-amino-acid insertion in the R2 loop compared with AmpC EC2. The crystal structures of AmpC BER (S64A mutant) and AmpC EC2 were determined. Structural comparison of the two proteins revealed that the insertion increases the conformational flexibility of the R2 loop. Two citrate molecules originating from the crystallization solution were observed in the active site of the S64A mutant. One citrate molecule makes extensive interactions with active-site residues that are highly conserved among class C β-lactamases, whereas the other one is weakly bound. Based on this structural observation, it is demonstrated that citrate, a primary metabolite that is widely used as a food additive, is a competitive inhibitor of two class C β-lactamases (AmpC BER and CMY-10). Consequently, the data indicate enhancement of the flexibility of the R2 loop as an operative strategy for molecular evolution of extended-spectrum class C β-lactamases, and also suggest that the citrate scaffold is recognized by the active sites of class C β-lactamases.


2013 ◽  
Vol 69 (10) ◽  
pp. 1876-1888 ◽  
Author(s):  
Fabienne Furt ◽  
William J. Allen ◽  
Joshua R. Widhalm ◽  
Peter Madzelan ◽  
Robert C. Rizzo ◽  
...  

The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacteriumSynechocystis(Slr0204) and the flowering plantArabidopsis thaliana(AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases fromPseudomonasandArthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.


2021 ◽  
Vol 08 ◽  
Author(s):  
Farzaneh Mohamadyar-Toupkanlou ◽  
Mina Esfandiari ◽  
Mahshid Sadat Kashef-Saberi ◽  
Mahboubeh Kabiri ◽  
Zahra Bazi

Background: In the last decades, growing evidence demonstrates interest in phytoestrogen intake to modulate targets in different types of cancer. Plant lignans have proven efficacious in blocking estrogen receptors of breast cancer cells. Among them, four phytoestrogen lignans: pinoresinol, matairesinol, lariciresinol, and secoisolariciresinol have been most studied. However, available studies have mostly dealt with anti-cancer effects of groups of lignans in certain foods or plants and the effects of specific lignans, especially from a molecular interaction viewpoint, have been rarely addressed in the literature. Objective: We aimed to in silico predict pharmacological properties, binding ability and binding strength of pinoresinol, matairesinol, lariciresinol and secoisolariciresinol as possible inhibitors of estrogen receptor alpha which is the most important biomarker in breast cancer. Methods: Firstly, we evaluated the pharmacological properties of four lignans using SwissADME. Then we investigated the ligand-receptor interactions of these molecules as positively appraised ligands for ER-positive breast cancer targeted therapy using docking method. We finally compared the inhibitory effect possibility of the lignans against endoxifen which is the active metabolite of tamoxifen. Results: The best binding affinity of endoxifen, matairesinol, pinoresinol, lariciresinol and secoisolariciresinol were respectively -9.2, -7.5, -6.7, -6.7, -5.8 kcal/mol. In the meantime, matairesinol showed the minimum binding energy than other studied lignans in addition to the most similar interactions to endoxifen with conserved domain residues of the active site pocket in Leu:391, Ala:350, Met:421, and Phe:404. Conclusion: Among the studied lignans, matairesinol showed the favorable pharmacokinetics and drug-likeliness properties, the least binding energy as well as the most common interactions in conserved residues of the active site pocket with estrogens. This makes it a molecule with low number of nonspecific interactions, better target selectivity, and hence fewer side effects. Thus, our results introduce matairesinol as a possibly effective anti-estrogen receptor inhibitor candidate.


Sign in / Sign up

Export Citation Format

Share Document