scholarly journals Structural and functional characterization of TesB fromYersinia pestisreveals a unique octameric arrangement of hotdog domains

2015 ◽  
Vol 71 (4) ◽  
pp. 986-995 ◽  
Author(s):  
C. M. D. Swarbrick ◽  
M. A. Perugini ◽  
N. Cowieson ◽  
J. K. Forwood

Acyl-CoA thioesterases catalyse the hydrolysis of the thioester bonds present within a wide range of acyl-CoA substrates, releasing free CoASH and the corresponding fatty-acyl conjugate. The TesB-type thioesterases are members of the TE4 thioesterase family, one of 25 thioesterase enzyme families characterized to date, and contain two fused hotdog domains in both prokaryote and eukaryote homologues. Only two structures have been elucidated within this enzyme family, and much of the current understanding of the TesB thioesterases has been based on theEscherichia colistructure.Yersinia pestis, a highly virulent bacterium, encodes only one TesB-type thioesterase in its genome; here, the structural and functional characterization of this enzyme are reported, revealing unique elements both within the protomer and quaternary arrangements of the hotdog domains which have not been reported previously in any thioesterase family. The quaternary structure, confirmed using a range of structural and biophysical techniques including crystallography, small-angle X-ray scattering, analytical ultracentrifugation and size-exclusion chromatography, exhibits a unique octameric arrangement of hotdog domains. Interestingly, the same biological unit appears to be present in both TesB structures solved to date, and is likely to be a conserved and distinguishing feature of TesB-type thioesterases. Analysis of theY. pestisTesB thioesterase activity revealed a strong preference for octanoyl-CoA and this is supported by structural analysis of the active site. Overall, the results provide novel insights into the structure of TesB thioesterases which are likely to be conserved and distinguishing features of the TE4 thioesterase family.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1599-C1599
Author(s):  
François Ferron ◽  
David Blocquel ◽  
Johnny Habchi ◽  
Eric Durand ◽  
Marion Sevajol ◽  
...  

The structural characterization of various constructs of the Measles virus (MeV) Phosphoprotein (P) multimerization domain (PMD) has brought to light significant discrepancies in the quaternary structure due to both crystal constraints and the flexible nature of this coiled-coil. Indeed, despite a conserved tetrameric parallel coiled-coil core, structural comparison unveiled significant deformations in the C-terminal extremities that even led to the partial unfolding of the coiled-coil. These deformations were induced by intermolecular interactions within the crystal, as well as by the crystallization condition. These deformations also suggest that PMD has the ability to adapt to external mechanical constrains. Using a combination of biophysical methods (size-exclusion chromatography, circular dichroism and small angle X-ray scattering), we assessed the differential flexibility of the C-terminal region of the MeV PMD in solution. Taken together, these results show that crystal packing can be used to "freeze" in a certain state, parts of proteins known to be in a dynamic folding-unfolding equilibrium. They also bring awareness that conclusions about function and mechanism based on analysis of a single crystal structure of a known dynamic protein can be easily biased, and they challenge to some extent the assumption that coiled-coil structures can be reliably predicted from the amino acid sequence.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander Moysa ◽  
Dietmar Hammerschmid ◽  
Roman H. Szczepanowski ◽  
Frank Sobott ◽  
Michal Dadlez

AbstractThe pattern recognition receptor RAGE (receptor for advanced glycation end-products) transmits proinflammatory signals in several inflammation-related pathological states, including vascular diseases, cancer, neurodegeneration and diabetes. Its oligomerization is believed to be important in signal transduction, but RAGE oligomeric structures and stoichiometries remain unclear. Different oligomerization modes have been proposed in studies involving different truncated versions of the extracellular parts of RAGE. Here, we provide basic characterization of the oligomerization patterns of full-length RAGE (including the transmembrane (TM) and cytosolic regions) and compare the results with oligomerization modes of its four truncated fragments. For this purpose, we used native mass spectrometry, analytical ultracentrifugation, and size-exclusion chromatography coupled with multi-angle light scattering. Our results confirm known oligomerization tendencies of separate domains and highlight the enhanced oligomerization properties of full-length RAGE. Mutational analyses within the GxxxG motif of the TM region show sensitivity of oligomeric distributions to the TM sequence. Using hydrogen–deuterium exchange, we mapped regions involved in TM-dependent RAGE oligomerization. Our data provide experimental evidence for the major role of the C2 and TM domains in oligomerization, underscoring synergy among different oligomerization contact regions along the RAGE sequence. These results also explain the variability of obtained oligomerization modes in RAGE fragments.


2020 ◽  
Author(s):  
Chihiro Inoue ◽  
Yoshitaka Abe ◽  
Nobutaka Fujieda

<p>Recently, the functional expression of group-5 hydroxylase component (MimA and MimC) in <i>Escherichia coli </i>along with its related chaperonin-like component (MimG) was reported by Furuya and Kino. In this study, we report the purification via a heterologous expression system and the biochemical characterization of MimAC, the complex of MimA and MimC and MimG to understand their exact roles. MimAC and MimG were fused with His-tags and purified using affinity chromatography in a homogenous state on SDS-PAGE. Blue native PAGE demonstrated that the quaternary structure of MimG was almost identical to that of chaperonin GroEL, indicating that its function was also similar to GroEL. Size-exclusion chromatography and ICP-AES analysis demonstrated that MimAC was assembled in the dimer of two sort of subunits and exhibited two iron atoms and at least one zinc atom per two subunits. This result indicated that MimAC possessed a dinuclear iron center, similar to other soluble diiron monooxygenase hydroxylases.</p>


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1237
Author(s):  
Jia Yang ◽  
Takahiro Sato

Size exclusion chromatography equipped with a multi-angle, light-scattering online detector (SEC-MALS) measurements were carried out on a hydrophobically modified pullulan (PUL-OSA) with degrees of substitution (DS) of 0.14, 0.2, and 0.3 in 0.01 M aqueous NaCl to obtain the degree of polymerization (N0) dependence of the radius of gyration (⟨S2⟩1/2) for PUL-OSA in the aqueous NaCl. The result was consistent with the loose flower necklace model proposed in a previous study, and the increase in the chain size with introducing OSA groups was explained by the backbone stiffness of the loose flower necklace formed by PUL-OSA. For PUL-OSA samples with DS = 0.2 and 0.3, ⟨S2⟩1/2 obtained by SEC-MALS in a high N0 region deviated downward from ⟨S2⟩1/2 expected by the loose flower necklace model. This deviation came from a tiny amount of the aggregating component of PUL-OSA, taking a branched architecture composed of loose flower necklaces. Although the aggregating component of PUL-OSA was also detected by previous small angle X-ray scattering measurements, its conformation was revealed in this study by SEC-MALS.


2020 ◽  
Author(s):  
Chihiro Inoue ◽  
Yoshitaka Abe ◽  
Nobutaka Fujieda

<p>Recently, the functional expression of group-5 hydroxylase component (MimA and MimC) in <i>Escherichia coli </i>along with its related chaperonin-like component (MimG) was reported by Furuya and Kino. In this study, we report the purification via a heterologous expression system and the biochemical characterization of MimAC, the complex of MimA and MimC and MimG to understand their exact roles. MimAC and MimG were fused with His-tags and purified using affinity chromatography in a homogenous state on SDS-PAGE. Blue native PAGE demonstrated that the quaternary structure of MimG was almost identical to that of chaperonin GroEL, indicating that its function was also similar to GroEL. Size-exclusion chromatography and ICP-AES analysis demonstrated that MimAC was assembled in the dimer of two sort of subunits and exhibited two iron atoms and at least one zinc atom per two subunits. This result indicated that MimAC possessed a dinuclear iron center, similar to other soluble diiron monooxygenase hydroxylases.</p>


Sign in / Sign up

Export Citation Format

Share Document