scholarly journals The equation of state of thePmmnphase of NiSi

2015 ◽  
Vol 48 (6) ◽  
pp. 1914-1920 ◽  
Author(s):  
Oliver T. Lord ◽  
Andrew R. Thomson ◽  
Elizabeth T. H. Wann ◽  
Ian G. Wood ◽  
David P. Dobson ◽  
...  

The equation of state of the orthorhombic phase of NiSi withPmmnsymmetry has been determined at room temperature from synchrotron-based X-ray diffraction measurements of its lattice parameters, made in a diamond anvil cell. Measurements were performed up to 44 GPa, using Ne as the pressure medium and Au as the pressure standard. The resulting pressure–volume (P–V) data have been fitted with a Birch–Murnaghan equation of state of third order to yieldV0= 11.650 (7) Å3 atom−1,K0= 162 (3) GPa andK0′ = 4.6 (2). In addition,P–Vdata have been collected on Ni53Si47in the B20 structure using both Ne and He as the pressure media and Cu and Au as the pressure standards, also to 44 GPa. A fit using the same Birch–Murnaghan equation of state of third order yieldsV0= 11.364 (6) Å3 atom−1,K0= 171 (4) GPa andK0′ = 5.5 (3).

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simone Anzellini ◽  
Michael T. Wharmby ◽  
Francesca Miozzi ◽  
Annette Kleppe ◽  
Dominik Daisenberger ◽  
...  

Abstract The isothermal equation of state of silicon has been determined by synchrotron x-ray diffraction experiments up to 105.2 GPa at room temperature using diamond anvil cells. A He-pressure medium was used to minimize the effect of uniaxial stress on the sample volume and ruby, gold and tungsten pressure gauges were used. Seven different phases of silicon have been observed along the experimental conditions covered in the present study.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1055
Author(s):  
Dariia Simonova ◽  
Elena Bykova ◽  
Maxim Bykov ◽  
Takaaki Kawazoe ◽  
Arkadiy Simonov ◽  
...  

A structure and equation of the state of δ-AlOOH has been studied at room temperature, up to 29.35 GPa, by means of single crystal X-ray diffraction in a diamond anvil cell using synchrotron radiation. Above ~10 GPa, we observed a phase transition with symmetry changes from P21nm to Pnnm. Pressure-volume data were fitted with the second order Birch-Murnaghan equation of state and showed that, at the phase transition, the bulk modulus (K0) of the calculated wrt 0 pressure increases from 142(5) to 216(5) GPa.


2015 ◽  
Vol 79 (2) ◽  
pp. 285-294 ◽  
Author(s):  
F. Nestola ◽  
B. Periotto ◽  
C. Anzolini ◽  
G. B. Andreozzi ◽  
A. B. Woodland ◽  
...  

AbstractIn this work a single crystal of synthetic hercynite, FeAl2O4, was investigated by X-ray diffraction up to 7.5 GPa and at room temperature, in order to determine its pressure–volume equation of state. The unit-cell volume decreases non-linearly with a reduction of 3.4% (i.e. 18.43 Å3). The pressure–volume data were fitted to a third-order Birch-Murnaghan equation of state providing the following coefficients: V0 = 542.58(3)Å3, KT0 = 193.9(1.7) GPa, K' = 6.0(5). These results are consistent with previous investigations of Cr and Al spinels measured with the same experimental approach but the KT0 differs significantly from the experimental determination carried out more than 40 years ago by Wang and Simmons (1972) by the pulse echo overlap method. Our new results were used to redetermine the FeAl2O4(hercynite) = FeO(wüstite) + Al2O3(corundum) equilibrium in P–T space and obtain geobarometric information for Cr-Al spinels found as inclusions in diamond.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Paola Comodi ◽  
Maximiliano Fastelli ◽  
Giacomo Criniti ◽  
Konstantin Glazyrin ◽  
Azzurra Zucchini

High-pressure synchrotron X-ray diffraction was carried out on a single crystal of mascagnite, compressed in a diamond anvil cell. The sample maintained its crystal structure up to ~18 GPa. The volume–pressure data were fitted by a third-order Birch–Murnaghan equation of state (BM3-EOS) yielding K0 = 20.4(7) GPa, K’0 = 6.1(2), and V0 = 499(1) Å3, as suggested by the F-f plot. The axial compressibilities, calculated with BM3-EOS, were K0a = 35(3), K’0a = 7.7(7), K0b = 10(3), K’0b = 7(1), K0c = 25(1), and K’0c = 4.3(2) The axial moduli measured using a BM2-EOS and fixing K’0 equal to 4, were K0a = 52(2), K0b = 20 (1), and K0c = 29.6(4) GPa, and the anisotropic ratio of K0a:K0b:K0c = 1:0.4:0.5. The evolution of crystal lattice and geometrical parameters indicated no phase transition until 17.6 GPa. Sulphate polyhedra were incompressible and the density increase of 30% compared to investigated pressure should be attributed to the reduction of weaker hydrogen bonds. In contrast, some of them, directed along [100], were very short at room temperature, below 2 Å, and showed a very low compressibility. This configuration explains the anisotropic compressional behavior and the lowest compressibility of the a axis.


2005 ◽  
Vol 69 (3) ◽  
pp. 317-323 ◽  
Author(s):  
M. H. Manghnani ◽  
G. Amulele ◽  
J. R. Smyth ◽  
C. M. Holl ◽  
G. Chen ◽  
...  

AbstractThe equation of state of Fo90 hydrous ringwoodite has been measured using X-ray powder diffraction to 45 GPa at the GSECARS beam line at the Advanced Photon Source synchrotron at Argonne National Laboratory. The sample was synthesized at 1400°C and 20 GPa in the 5000 ton multi anvil press at Bayerisches Geoinstitut in Bayreuth. The sample has the formula Mg1.70Fe0.192+ Fe0.023+H0.13- Si1.00O4 as determined by electron microprobe, Fourier transform infrared and Mössbauer spectroscopies, and contains ~0.79% H2O by weight. Compression of the sample had been been measured previously to 11 GPa by single crystal X-ray diffraction. A third-order Birch-Murnaghan equation of state fit to all of the data gives V0 = 530.49±0.07 Å3, K0 = 174.6±2.7 GPa and K' = 6.2±0.6. The effect of 1% H incorporation in the structure on the bulk modulus is large and roughly equivalent to an increase in the temperature of ∼600°C at low pressure. The large value of K' indicates significant stiffening of the sample with pressure so that the effect of hydration decreases with pressure.


2013 ◽  
Vol 77 (7) ◽  
pp. 3007-3017 ◽  
Author(s):  
F. Nestola ◽  
S. J. Mills ◽  
B. Periotto ◽  
L. Scandolo

AbstractA single crystal of natrojarosite, NaFe3(SO4)2(OH)6, was investigated by single-crystal X-ray diffraction at high-pressure conditions (up to 8.8 GPa) using a diamond-anvil cell. The unit-cell parameters were determined at 11 different pressures and no indications of a phase transition were found up to the maximum pressure reached. The volume and axial moduli were fitted to a third-order Birch–Murnaghan equation-of-state which gave the following values: V0 = 769.6(2) Å3, KT0 = 50.6(9) GPa, K' = 9.9(4); a = 7.3172(6) Å, KT0 = 104(2), K' = 7.6(9); c = 16.5965(20) Å, KT0 = 24.6(4) and K' = 7.1(2). The crystal structure of natrojarosite was refined at seven different pressures up to 8.779(11) GPa [a = 7.3170(4), c = 16.5955(5) Å and V = 769.46(9) Å3 in Rm at 0.00010(1) GPa and a = 7.1594(8), c = 15.6003(17) Å and V = 692.49(8) Å3 at 8.779(11) GPa]. The structural analysis shows that the 12-fold Na polyhedron accommodates most of the deformation by a large volume decrease (14%) and strong polyhedral distortion (63%). Our results indicate that natrojarosite has the most compressible structure of the supergroup studied so far, and has a very strong axial anisotropy.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 516
Author(s):  
Timofey Fedotenko ◽  
Saiana Khandarkhaeva ◽  
Leonid Dubrovinsky ◽  
Konstantin Glazyrin ◽  
Pavel Sedmak ◽  
...  

We report the high-pressure synthesis and the equation of state (EOS) of a novel nickel carbide (Ni3C). It was synthesized in a diamond anvil cell at 184(5) GPa through a direct reaction of a nickel powder with carbon from the diamond anvils upon heating at 3500 (200) K. Ni3C has the cementite-type structure (Pnma space group, a = 4.519(2) Å, b = 5.801(2) Å, c = 4.009(3) Å), which was solved and refined based on in-situ synchrotron single-crystal X-ray diffraction. The pressure-volume data of Ni3C was obtained on decompression at room temperature and fitted to the 3rd order Burch-Murnaghan equation of state with the following parameters: V0 = 147.7(8) Å3, K0 = 157(10) GPa, and K0' = 7.8(6). Our results contribute to the understanding of the phase composition and properties of Earth’s outer core.


2002 ◽  
Vol 66 (3) ◽  
pp. 431-440 ◽  
Author(s):  
M. D. Welch ◽  
W. A. Crichton

AbstractThe equation of state of synthetic deuterated burtite, CaSn(OD)6, has been determined to 7.25 GPa at 298 K by synchrotron X-ray powder diffraction. Fitting to a third-order Birch-Murnaghan equation of state gives K0 = 44.7(9) GPa and K0′ = 5.3(4). A second-order fit gives K0 = 47.4(4) GPa. Within experimental error the two fits are indistinguishable over the pressure range studied. The decrease in the a parameter with pressure is smooth and no phase transitions were observed. Burtite is much more compressible (by a factor of three or four) than CaSnO3 and CdSnO3 perovskites, indicating that the absence of a cavity cation has a major effect upon the compressibility of the octahedral framework. Burtite is also markedly more compressible than the closely-related mineral stottite FeGe(OH)6 (K0 = 78 GPa). Their different compressibilities correlate with the relative compressibilities of stannate and germanate perovskites. Although different octahedral compressions are likely to be the primary reason for the different compressibilities of burtite and stottite, we also consider the possible secondary role of hydrogen-bonding topology in affecting the compressibilities of protonated octahedral frameworks. Burtite and stottite have different hydrogen-bonding topologies due to their different octahedral-tilt system. Burtite, space group Pn3̄ and tilt system a+a+a+, has a hydrogen-bonded network of linked four-membered rings of O-H…O linkages, whereas stottite, space group P42/n and tilt system a+a+c−, has <100> O-H…O crankshafts and isolated four-membered rings. These different hydrogen-bonded configurations lead to different bracing of the empty cavity sites by the O-H…O linkages and very different hydrogen-bonding connectivities in these two minerals that may also enhance the difference between their compressibilities.


1997 ◽  
Vol 30 (4) ◽  
pp. 461-466 ◽  
Author(s):  
R. J. Angel ◽  
D. R. Allan ◽  
R. Miletich ◽  
L. W. Finger

The unit-cell parameters of quartz, SiO2, have been determined by single-crystal diffraction at 22 pressures to a maximum pressure of 8.9 GPa (at room temperature) with an average precision of 1 part in 9000. Pressure was determined by the measurement of the unit-cell volume of CaF2 fluorite included in the diamond-anvil pressure cell. The variation of quartz unit-cell parameters with pressure is described by: a −4.91300 (11) = −0.0468 (2) P + 0.00256 (7) P 2 − 0.000094 (6) P 3, c − 5.40482 (17) = − 0.03851 (2) P + 0.00305 (7) P 2 − 0.000121 (6) P 3, where P is in GPa and the cell parameters are in ångstroms. The volume–pressure data of quartz are described by a Birch–Murnaghan third-order equation of state with parameters V 0 = 112.981 (2) å3, K T0 = 37.12 (9) GPa and K′ = 5.99 (4). Refinement of K′′ in a fourth-order equation of state yielded a value not significantly different from the value implied by the third-order equation. The use of oriented quartz single crystals is proposed as an improved internal pressure standard for high-pressure single-crystal diffraction experiments in diamond-anvil cells. A measurement precision of 1 part in 10 000 in the volume of quartz leads to a precision in pressure measurement of 0.009 GPa at 9 GPa.


Sign in / Sign up

Export Citation Format

Share Document