diamond anvils
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 18)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Isaac Silvera ◽  
Ranga Dias

For over eighty years, scientists have been trying to produce lab-made metallic hydrogen, the holy grail of alternative fuels. In that process, diamond anvils must withstand pressures greater than those at the center of the earth—no mean feat. Recent research may have finally achieved hydrogen’s metallic state. All that remains is for another lab to reproduce the results.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 516
Author(s):  
Timofey Fedotenko ◽  
Saiana Khandarkhaeva ◽  
Leonid Dubrovinsky ◽  
Konstantin Glazyrin ◽  
Pavel Sedmak ◽  
...  

We report the high-pressure synthesis and the equation of state (EOS) of a novel nickel carbide (Ni3C). It was synthesized in a diamond anvil cell at 184(5) GPa through a direct reaction of a nickel powder with carbon from the diamond anvils upon heating at 3500 (200) K. Ni3C has the cementite-type structure (Pnma space group, a = 4.519(2) Å, b = 5.801(2) Å, c = 4.009(3) Å), which was solved and refined based on in-situ synchrotron single-crystal X-ray diffraction. The pressure-volume data of Ni3C was obtained on decompression at room temperature and fitted to the 3rd order Burch-Murnaghan equation of state with the following parameters: V0 = 147.7(8) Å3, K0 = 157(10) GPa, and K0' = 7.8(6). Our results contribute to the understanding of the phase composition and properties of Earth’s outer core.


2021 ◽  
Vol 0 (1) ◽  
pp. 102-105
Author(s):  
A.V. TEBENKOV ◽  
◽  
G.V. SUKHANOVA ◽  
A.N. BABUSHKIN ◽  
◽  
...  

Research has been performed into baric dependences between electrical resistance and thermo-EMF of eutectic solid solutions based on cadmium diarsenide of various compositions (Cd0.97Zn0.03As2 and Cd0.95Zn0.05As2) at pressures from 16 to 50 GPa and room temperature. Pressures were created in a chamber with conducting diamond anvils that served as contacts with the sample. Structural changes were recorded by changing electrical resistance and thermo-EMF. When replacing cadmium atom, zinc forms closer bonds with arsenic, which must result in the crystal lattice strengthening and higher pressures of phase transitions. Solid solutions preserve phase transitions observed in pure cadmium diarsenide. An increase in the crystal lattice stability of the solutions is confirmed compared to initial cadmium diarsenide. It is shown that with an increase in the zinc concentration pressures of phase transitions are shifted into the zone of higher pressures. The compounds preserve electronic conductivity in the range of pressures under consideration. At pressures higher than 30 GPa the thermo-EMF values become close to zero. This may be due to both an increase on concentrations of minority charge carriers and the impact of additional donating levels in the forbidden zone of solid solutions.


2020 ◽  
Vol 27 (4) ◽  
pp. 963-969
Author(s):  
J.-K. Kim ◽  
Diego Casa ◽  
Xianrong Huang ◽  
Thomas Gog ◽  
B. J. Kim ◽  
...  

Resonant inelastic X-ray scattering (RIXS) is increasingly playing a significant role in studying highly correlated systems, especially since it was proven capable of measuring low-energy magnetic excitations. However, despite high expectations for experimental evidence of novel magnetic phases at high pressure, unequivocal low-energy spectral signatures remain obscured by extrinsic scattering from material surrounding the sample in a diamond anvil cell (DAC): pressure media, Be gasket and the diamond anvils themselves. A scattered X-ray collimation based medium-energy resolution (∼100 meV) analyzer system for a RIXS spectrometer at the Ir L 3-absorption edge has been designed and built to remediate these difficulties. Due to the confocal nature of the analyzer system, the majority of extrinsic scattering is rejected, yielding a clean low-energy excitation spectrum of an iridate Sr2IrO4 sample in a DAC cell. Furthermore, the energy resolution of different configurations of the collimating and analyzing optics are discussed.


2019 ◽  
Vol 40 (1) ◽  
pp. 148-161 ◽  
Author(s):  
Takehiko Yagi ◽  
Takeshi Sakai ◽  
Hirokazu Kadobayashi ◽  
Tetsuo Irifune
Keyword(s):  

Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. 1349-1354 ◽  
Author(s):  
S. Hsieh ◽  
P. Bhattacharyya ◽  
C. Zu ◽  
T. Mittiga ◽  
T. J. Smart ◽  
...  

Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven α↔ϵ phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures.


2019 ◽  
Vol 116 (51) ◽  
pp. 25512-25515 ◽  
Author(s):  
Alexander F. Goncharov ◽  
Irina Chuvashova ◽  
Cheng Ji ◽  
Ho-kwang Mao

We performed Raman and infrared (IR) spectroscopy measurements of hydrogen at 295 K up to 280 GPa at an IR synchrotron facility of the Shanghai Synchrotron Radiation Facility (SSRF). To reach the highest pressure, hydrogen was loaded into toroidal diamond anvils with 30-μm central culet. The intermolecular coupling has been determined by concomitant measurements of the IR and Raman vibron modes. In phase IV, we find that the intermolecular coupling is much stronger in the graphenelike layer (G layer) of elongated molecules compared to the Br2-like layer (B layer) of shortened molecules and it increases with pressure much faster in the G layer compared to the B layer. These heterogeneous lattice dynamical properties are unique features of highly fluxional hydrogen phase IV.


Sign in / Sign up

Export Citation Format

Share Document