Line profile analysis of synchrotron X-ray diffraction data of iron powder with bimodal microstructural profile parameters

2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Ashok Bhakar ◽  
Pooja Gupta ◽  
P. N. Rao ◽  
M. K. Swami ◽  
Pragya Tiwari ◽  
...  

Room-temperature synchrotron X-ray diffraction and subsequent detailed line profile analysis of Fe powder were performed for microstructural characterization. The peak shapes of the diffraction pattern of Fe were found to be super-Lorentzian in nature and the peak widths were anisotropically broadened. These peak profile features of the diffraction pattern are related to the microstructural parameters of the material. In order to elucidate these features of the diffraction pattern, detailed line (peak) profile analyses were performed using the Rietveld method, modified Williamson–Hall plots and whole powder pattern modelling (WPPM), and related microstructural parameters were determined. Profile fitting using the Rietveld and WPPM methods with a single microstructural (unimodal) model shows systematic deviation from the experimentally observed diffraction pattern. On the basis of Rietveld analysis and microstructural modelling it is revealed that the microstructure of Fe consists of two components (bimodal profile). The microstructural parameters of crystallite/domain size distribution, dislocation density, nature of dislocations and phase fraction were evaluated for both components. The results obtained using different methods are compared, and it is shown that diffraction peak profile analysis is capable of modelling such inhomogeneous bimodal microstructures.

2016 ◽  
Vol 24 (06) ◽  
pp. 1750078 ◽  
Author(s):  
K. ZHAN ◽  
W. Q. FANG ◽  
B. ZHAO ◽  
Y. YAN ◽  
Q. FENG ◽  
...  

S30432 steels were processed by multistep shot peening treatment. The refined microstructures, including domain size, microstrain, domain size distribution and texture were characterized by X-ray diffraction (XRD) line profile analysis method, respectively. The results demonstrate that in the deformed layers, a gradient structure is formed after shot peening. The domain size reaches 25[Formula: see text]nm at the surface, then it decreases as the depth increases, but microstrain (0.0027) is the largest at the surface. The domain size distributions at different depths calculated by Rietveld method are consistent with domain size variation along the depth. There are no strong textures after shot peening treatment. The change of microhardness along the depth is in accordance with the gradient microstructure. It is expected that this work can offer useful information for characterizing the microstructure of shot peened materials.


2009 ◽  
Vol 68 ◽  
pp. 44-51 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
S.R. Srikumar ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Thin films of CdSe were electrodeposited on tin oxide coated conducting glass substrates at various bath temperatures. The deposited films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray diffraction studies revealed that the deposited films are found to be hexagonal structure with preferential orientation along (002) plane. The microstructural parameters such as crystallite size, R.M.S strain, dislocation density, stacking fault probability were calculated using x-ray line profile analysis technique. The variation of microstructural parameters with bath temperature and film thickness were studied and discussed.


2009 ◽  
Vol 24 (3) ◽  
pp. 205-220 ◽  
Author(s):  
Serge Vives ◽  
Cathy Meunier

Four sol-gel TiO2 powders have been prepared from titanium tetraisopropoxide. The calcined powders are then characterized by X-ray diffraction. Cell parameters are extracted using two Rietveld refinement programs (FULLPROF and MAUD) leading to close values and indicating a contraction of the a (or b) cell parameter and an expansion of the c cell parameter of the anatase phase with temperature. Crystallite size and microstrain are highly dependent not only on the sol synthesis but also on the diffraction line profile analysis (LPA) models (i.e., Williamson-Hall, Thomson-Cox-Hastings, Dehlez et al., and log-normal size distribution) employed. Discrepancies are then observed for the phase transformation critical size, the activation energy of grain growth, and the microstrain stored potential energy according to the LPA approach used to calculate the microstructural parameters.


2012 ◽  
Vol 60 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Adnan Hossain Khan ◽  
Parimal Bala ◽  
AFM Mustafizur Rahman ◽  
Mohammad Nurnabi

Glycine-Montmorillonite (Gly-MMT) composite has been synthesized through intercalation process using Na-Montmorillonite (Na- MMT) and glycine ethylester hydrochloride. Gly-MMT was employed for the synthesis of dipeptide (Gly-Gly-MMT). Microstructural parameters such as crystallite size, r.m.s. strain (<e2>1/2) and layer disorder parameters such as variation of interlayer spacing (g) and proportion of planes affected by such defects (?) of the samples have been calculated by X-ray line profile analysis. In comparison to Na-MMT the basal spacings (d001) of Gly-MMT and Gly-Gly-MMT were reduced by 2.4Å and 1.8Å respectively. The value of d001 of Gly-Gly-MMT (13.3 Å) suggests the monolayer orientation of dipeptide into interlayer spaces. It is also suggested that more homogeneity in the stacking of silicate layers is attained in Gly-Gly-MMT due to the increased chain length of the dipeptide and orientation in monolayer style.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10331Dhaka Univ. J. Sci. 60(1): 25-29, 2012 (January)


2006 ◽  
Vol 39 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Paolo Scardi ◽  
Matteo Leoni

Powder diffraction data collected on a nanocrystalline ceria sample within a round robin conducted by the IUCr Commission on Powder Diffraction were analysed by two alternative approaches: (i) whole-powder-pattern modelling based upon a fundamental microstructural parameters approach, and (ii) a traditional whole-powder-pattern fitting followed by Williamson–Hall and Warren–Averbach analysis. While the former gives results in close agreement with those of transmission electron microscopy, the latter tends to overestimate the domain size effect, providing size values about 20% smaller. The origin of the discrepancy can be traced back to a substantial inadequacy of profile fitting with Voigt profiles, which leads to systematic errors in the following line profile analysis by traditional methods. However, independently of the model, those systematic errors seem to have little effect on the volume-weighted mean size.


2000 ◽  
Vol 640 ◽  
Author(s):  
C. Seitz ◽  
A. Magerl ◽  
R. Hock ◽  
H. Heissenstein ◽  
R. Helbig

ABSTRACTWe have investigated by x-ray diffraction defect structures in 6H-SiC after neutron irradiation with different fluences and followed by different annealing procedures. An interpretation along a model of Klimanek [1, 4–6] shows, that higher fluences lead to a stronger than linear reduction of the correlation length, whereas higher annealing temperatures correlate with a better recovery of the correlation length. In addition defects of 1st kind created by irradiation are reduced by annealing. We find that annealing changes the character of the defects and it accentuates a defect structure already present in the original samples.


Sign in / Sign up

Export Citation Format

Share Document