scholarly journals Towards tender X-rays with Zernike phase-contrast imaging of biological samples at 50 nm resolution

2014 ◽  
Vol 21 (4) ◽  
pp. 790-794 ◽  
Author(s):  
Ismo Vartiainen ◽  
Martin Warmer ◽  
Dennis Goeries ◽  
Eva Herker ◽  
Rudolph Reimer ◽  
...  

X-ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X-rays is necessary for three-dimensional structural studies of thick specimens with high-Zelements. In this paper it is shown that full-field X-ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full-field Zernike phase-contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X-ray energies between 2.5 keV and 4 keV is expected.

2015 ◽  
Vol 22 (6) ◽  
pp. 1531-1539 ◽  
Author(s):  
A. K. Agrawal ◽  
B. Singh ◽  
Y. S. Kashyap ◽  
M. Shukla ◽  
P. S. Sarkar ◽  
...  

A full-field hard X-ray imaging beamline (BL-4) was designed, developed, installed and commissioned recently at the Indus-2 synchrotron radiation source at RRCAT, Indore, India. The bending-magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high-resolution radiography, propagation- and analyzer-based phase contrast imaging, real-time imaging, absorption and phase contrast tomographyetc. First experiments on propagation-based phase contrast imaging and micro-tomography are reported.


2010 ◽  
Vol 6 (6) ◽  
pp. 740-743 ◽  
Author(s):  
Renaud Boistel ◽  
Anthony Herrel ◽  
Gheylen Daghfous ◽  
Paul-Antoine Libourel ◽  
Elodie Boller ◽  
...  

Chamaeleons are well known for their unique suite of morphological adaptations. Whereas most chamaeleons are arboreal and have long tails, which are used during arboreal acrobatic manoeuvres, Malagasy dwarf chamaeleons ( Brookesia ) are small terrestrial lizards with relatively short tails. Like other chamaeleons, Brookesia have grasping feet and use these to hold on to narrow substrates. However, in contrast to other chamaeleons, Brookesia place the tail on the substrate when walking on broad substrates, thus improving stability. Using three-dimensional synchrotron X-ray phase-contrast imaging, we demonstrate a set of unique specializations in the tail associated with the use of the tail during locomotion. Additionally, our imaging demonstrates specializations of the inner ear that may allow these animals to detect small accelerations typical of their slow, terrestrial mode of locomotion. These data suggest that the evolution of a terrestrial lifestyle in Brookesia has gone hand-in-hand with the evolution of a unique mode of locomotion and a suite of morphological adaptations allowing for stable locomotion on a wide array of substrates.


2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shizhen Yuan ◽  
Tian-tian Wang ◽  
...  

Abstract Objectives This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using X-ray in-line phase-contrast imaging (XILPCI). The aim of the study was to demonstrate that XILPCI is a micron imaging method for gastric structures. Methods The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution. Results The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastroduodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future. Keywords: Synchrotron radiation phase-contrast imaging, 3-dimensional gastric structure images


2018 ◽  
Vol 4 (10) ◽  
pp. 113
Author(s):  
Simon Zabler

Very early, in 1896, Wilhelm Conrad Röntgen, the founding father of X-rays, attempted to measure diffraction and refraction by this new kind of radiation, in vain. Only 70 years later, these effects were measured by Ulrich Bonse and Michael Hart who used them to make full-field images of biological specimen, coining the term phase-contrast imaging. Yet, another 30 years passed until the Talbot effect was rediscovered for X-radiation, giving rise to a micrograting based interferometer, replacing the Bonse–Hart interferometer, which relied on a set of four Laue-crystals for beam splitting and interference. By merging the Lau-interferometer with this Talbot-interferometer, another ten years later, measuring X-ray refraction and X-ray scattering full-field and in cm-sized objects (as Röntgen had attempted 110 years earlier) became feasible in every X-ray laboratory around the world. Today, now that another twelve years have passed and we are approaching the 125th jubilee of Röntgen’s discovery, neither Laue-crystals nor microgratings are a necessity for sensing refraction and scattering by X-rays. Cardboard, steel wool, and sandpaper are sufficient for extracting these contrasts from transmission images, using the latest image reconstruction algorithms. This advancement and the ever rising number of applications for phase-contrast and dark-field imaging prove to what degree our understanding of imaging physics as well as signal processing have advanced since the advent of X-ray physics, in particular during the past two decades. The discovery of the electron, as well as the development of electron imaging technology, has accompanied X-ray physics closely along its path, both modalities exploring the applications of new dark-field contrast mechanisms these days. Materials science, life science, archeology, non-destructive testing, and medicine are the key faculties which have already integrated these new imaging devices, using their contrast mechanisms in full. This special issue “Phase-Contrast and Dark-field Imaging” gives us a broad yet very to-the-point glimpse of research and development which are currently taking place in this very active field. We find reviews, applications reports, and methodological papers of very high quality from various groups, most of which operate X-ray scanners which comprise these new imaging modalities.


2011 ◽  
Vol 5 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Lu Zhang ◽  
Shuqian Luo

The current imaging methods have a limited ability to visualize microstructures of biological soft tissues. Small lesions cannot be detected at the early stage of the disease. Phase contrast imaging (PCI) is a novel non-invasive imaging technique that can provide high contrast images of soft tissues by the use of X-ray phase shift. It is a new choice in terms of non-invasively revealing soft tissue details. In this study, the lung and hepatic fibrosis models of mice and rats were used to investigate the ability of PCI in microstructures observation of soft tissues. Our results demonstrated that different liver fibrosis stages could be distinguished non-invasively by PCI. The three-dimensional morphology of a segment of blood vessel was constructed. Noteworthy, the blood clot inside the vessel was visualized in three dimensions which provided a precise description of vessel stenosis. Furthermore, the whole lung airways including the alveoli were obtained. We had specifically highlighted its use in the visualization and assessment of the alveoli. To our knowledge, this was the first time for non-invasive alveoli imaging using PCI. This finding may offer a new perspective on the diagnosis of respiratory disease. All the results confirmed that PCI will be a valuable tool in biological soft tissues imaging.


2005 ◽  
Vol 20 (2) ◽  
pp. 173-173
Author(s):  
S.W. Wilkins ◽  
D. Gao ◽  
T.E. Gureyev ◽  
S.C. Mayo ◽  
P.R. Miller ◽  
...  

2017 ◽  
Vol 50 (22) ◽  
pp. 225401 ◽  
Author(s):  
Tobias J Schröter ◽  
Frieder J Koch ◽  
Danays Kunka ◽  
Pascal Meyer ◽  
Sabrina Tietze ◽  
...  

2008 ◽  
Vol 16 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Martin Bech ◽  
Oliver Bunk ◽  
Christian David ◽  
Ronald Ruth ◽  
Jeff Rifkin ◽  
...  

2005 ◽  
Vol 40 (7) ◽  
pp. 385-396 ◽  
Author(s):  
Toyohiko Tanaka ◽  
Chika Honda ◽  
Satoru Matsuo ◽  
Kazuo Noma ◽  
Hiromu Oohara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document