scholarly journals X-ray diffraction strain analysis of a single axial InAs1–xPxnanowire segment

2015 ◽  
Vol 22 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Mario Keplinger ◽  
Bernhard Mandl ◽  
Dominik Kriegner ◽  
Václav Holý ◽  
Lars Samuelsson ◽  
...  

The spatial strain distribution in and around a single axial InAs1–xPxhetero-segment in an InAs nanowire was analyzed using nano-focused X-ray diffraction. In connection with finite-element-method simulations a detailed quantitative picture of the nanowire's inhomogeneous strain state was achieved. This allows for a detailed understanding of how the variation of the nanowire's and hetero-segment's dimensions affect the strain in its core region and in the region close to the nanowire's side facets. Moreover, ensemble-averaging high-resolution diffraction experiments were used to determine statistical information on the distribution of wurtzite and zinc-blende crystal polytypes in the nanowires.

2005 ◽  
Vol 475-479 ◽  
pp. 1697-1700
Author(s):  
Qian Feng ◽  
Yue Hao

The influence of Mg doping on structural and strain properties in GaN layers grown on sapphire substrates by metalorganic chemical vapor deposition was studied by means of high resolution X-ray diffraction and Raman scattering. The results showed that the disorder of GaN films aggravated and the quality reduced as Mg doping rate increasing. However, according to the theoretic calculation, the compressive stress determined by the Raman shift of the E2 mode was not due to the substitution of Mg atoms for Ga. Furthermore, the SEM measurements indicated that some Mg atoms substituted Ga to become acceptors, while most of them existed as Mg interstitials(Mgi) and aggregated at defects and dislocation, hence a great deal of cracks are introduced during decreasing temperature process for inhomogeneous strain distribution.


2021 ◽  
pp. 2100201
Author(s):  
Philipp Jordt ◽  
Stjepan B. Hrkac ◽  
Jorit Gröttrup ◽  
Anton Davydok ◽  
Christina Krywka ◽  
...  

1993 ◽  
Vol 317 ◽  
Author(s):  
R.M. Osgood ◽  
B.M. Clemens ◽  
R.L. White ◽  
S. Brennan

ABSTRACTGrazing incidence and asymmetric X-ray diffraction were used to measure the stress and strain state of Fe(110)/Mo(110) Multilayers. The highest stress in the Fe constituent of the multilayer was along the [110] in-plane direction and was due to interaction with the substrate. The Magnetic anisotropy of the Fe Multilayer constituent was measured and the magnetic surface anisotropy, which favored in-plane [001] magnetization, was deduced. In contrast, the magnetic surface anisotropy of a single layer of Fe on W preferred in-plane [110] magnetization, in agreement with the Néel Model.


2014 ◽  
Vol 996 ◽  
pp. 135-140
Author(s):  
Shigeru Suzuki ◽  
Shigeo Sato ◽  
Koji Hotta ◽  
Eui Pyo Kwon ◽  
Shun Fujieda ◽  
...  

White X-ray diffraction with micro-beam synchrotron radiation was used to analyze microscopic stress evolved in coarse grains of a twinning-induced plasticity Fe-Mn-C steel under tensile loading. In addition, electron backscatter diffraction (EBSD) was used to determine the crystal orientation of grains in the polycrystalline Fe-Mn-C steel. Based on these orientation data, the stress and strain distribution in the microstructure of the steel under tensile loading was estimated using FEM simulation where the elastic anisotropy or the crystal orientation dependence of the elasticity was taken into account. The FEM simulation showed that the strain distribution in the microstructure depends on the crystal orientation of each grain. The stress analysis by the white X-ray diffraction indicated that the direction of the maximum principal stresses at measured points in the steel under tensile loading are mostly oriented toward the tensile direction. This is qualitatively consistent with the results of by the FEM simulation, although absolute values of the principal stresses may contain the effect of heterogeneous plastic deformation on the stress distribution.


Author(s):  
N.B. Chertova ◽  
◽  
Yu.V. Grinyaev ◽  

The stress-strain state on the interface of the elastic solids is investigated. The studied interface presents a contact layer which is characterized by dimension and the set of physics mechanical parameters. The models of layered and block medium are used for the description this boundary. In the framework of these models the problem of elastic wave propagation through the interface is considered. Analytical expressions for the refraction and reflection coefficients allowing us to determine the strains on the interface and strains distribution in the contact layer are found. Corresponding strains amplitudes depending on the layer thickness are calculated at the different elastic parameters of contacting solids and boundary. The strain laws on the interface which is described by the layered and block medium models are analyzed. The regions of equivalent use these models are determined in the case of strain analysis on the boundary and the strain distribution in the contact layer.


2019 ◽  
Vol 181 ◽  
pp. 108063 ◽  
Author(s):  
Fakhrodin Motazedian ◽  
Zhigang Wu ◽  
Junsong Zhang ◽  
Bashir Samsam Shariat ◽  
Daqiang Jiang ◽  
...  

Hyomen Kagaku ◽  
2007 ◽  
Vol 28 (12) ◽  
pp. 678-681
Author(s):  
Hiroo OMI ◽  
Tomoaki KAWAMURA ◽  
Yoshihiro KOBAYASHI ◽  
Seiji FUJIKAWA ◽  
Yoshiyuki TSUSAKA ◽  
...  

2019 ◽  
Vol 971 ◽  
pp. 79-84
Author(s):  
Chun Guang Zhang

As a promising third generation semiconductor material, gallium nitride (GaN) has become a research hotspot in optoelectronic field nowadays. In this paper, GaN thin films were grown by radio frequency (RF) planar magnetron sputtering of a powder GaN target in a pure nitrogen atmosphere at (0.2 – 2.0) Pa, (10 - 100) W onto various substrates such as GaAs (100), Si (100), Si (111), Al2O3(0001) and glass without any buffer layer. A clear phase transition from the metastable cubic zinc-blende (c - ZB) to the stable hexagonal wurtzite (h - WZ) dependence on substrates has been found in the GaN thin films. And the phase transition of GaN films were studied by X-ray diffraction (XRD), photoluminescence (PL) and Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document