Multi-channelin situdynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12

2018 ◽  
Vol 25 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Sven Falke ◽  
Karsten Dierks ◽  
Clement Blanchet ◽  
Melissa Graewert ◽  
Florent Cipriani ◽  
...  

Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography–SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 975
Author(s):  
Melissa A. Graewert ◽  
Stefano Da Vela ◽  
Tobias W. Gräwert ◽  
Dmitry S. Molodenskiy ◽  
Clément E. Blanchet ◽  
...  

We describe the updated size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) set-up used at the P12 bioSAXS beam line of the European Molecular Biology Laboratory (EMBL) at the PETRAIII synchrotron, DESY Hamburg (Germany). The addition of size exclusion chromatography (SEC) directly on-line to the SAXS capillary has become a well-established approach to reduce the effects of the sample heterogeneity on the SAXS measurements. The additional use of multi-angle laser light scattering (MALLS), UV absorption spectroscopy, refractive index (RI), and quasi-elastic light scattering (QELS) in parallel to the SAXS measurements enables independent molecular weight validation and hydrodynamic radius estimates. This allows one to address sample monodispersity as well as conformational heterogeneity. The benefits of the current SEC-SAXS set-up are demonstrated on a set of selected standard proteins. The processed SEC-SAXS data and models are provided in the Small Angle Scattering Biological Data Bank (SASBDB) and are labeled as “bench-marked” datasets that include the unsubtracted data frames spanning the respective SEC elution profiles and corresponding MALLS-UV-RI-QELS data. These entries provide method developers with datasets suitable for testing purposes, in addition to an educational resource for SAS data analysis and modeling.


2010 ◽  
Vol 43 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Shuji Akiyama

Small-angle X-ray scattering (SAXS) is a powerful technique with which to evaluate the size and shape of biological macromolecules in solution. Forward scattering intensity normalized relative to the particle concentration,I(0)/c, is useful as a good measure of molecular mass. A general method for deducing the molecular mass from SAXS data is to determine the ratio ofI(0)/cof a target protein to that of a standard protein with known molecular mass. The accuracy of this interprotein calibration is affected considerably by the monodispersity of the prepared standard, as well as by the precision in estimating its concentration. In the present study, chromatographic fractionation followed by hydrodynamic characterization is proposed as an effective procedure by which to prepare a series of monodispersed protein standards. The estimation of molecular mass within an average deviation of 8% is demonstrated using monodispersed bovine serum albumin as a standard. The present results demonstrate the importance of protein standard quality control in order to take full advantage of interprotein calibration.


2015 ◽  
Vol 48 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Robert M. G. Hynson ◽  
Anthony P. Duff ◽  
Nigel Kirby ◽  
Stephan Mudie ◽  
Lawrence K. Lee

Small-angle X-ray scattering (SAXS) can provide accurate structural information and low-resolution shapes of macromolecules in solution. The technique is particularly amenable to large protein assemblies, which produce a strong scattering signal. Hence, SAXS can be a powerful tool to elucidate quaternary structure, especially when used in combination with high-resolution structural techniques such as X-ray crystallography and NMR. Sample requirements for SAXS experiments are stringent and only monodispersed samples can be satisfactorily analysed. Often, it is not possible to obtain a stable monodispersed sample of the protein of interest, in particular for multi-subunit protein complexes. In these circumstances, when the complex is less than approximately 1 MDa, size exclusion chromatography (SEC) coupled with SAXS (SEC-SAXS) can facilitate the separation of monodispersed protein from a polydispersed sample for a sufficient amount of time to collect useful SAXS data. However, many very large multi-subunit macromolecular assemblies have not been successfully purified with SEC, and hence despite being well suited to SAXS there is often no way to produce sample of sufficient quality. Rather than SEC, differential ultracentrifugation (DU) is the method of choice for the final step in the purification of large macromolecular protein complexes. Here, a new method is described for collecting SAXS data on samples directly from the fractionated elution of ultracentrifuge tubes after DU. It is demonstrated using apoferritin as a model protein that, like SEC-SAXS, DU-coupled SAXS can facilitate simultaneous purification and data collection. It is envisaged that this new method will enable high-quality SAXS data to be collected on a host of large macromolecular protein complex assemblies for the first time.


2018 ◽  
Vol 25 (4) ◽  
pp. 1113-1122 ◽  
Author(s):  
Martin A. Schroer ◽  
Clement E. Blanchet ◽  
Andrey Yu. Gruzinov ◽  
Melissa A. Gräwert ◽  
Martha E. Brennich ◽  
...  

Radiation damage by intense X-ray beams at modern synchrotron facilities is one of the major complications for biological small-angle X-ray scattering (SAXS) investigations of macromolecules in solution. To limit the damage, samples are typically measured under a laminar flow through a cell (typically a capillary) such that fresh solution is continuously exposed to the beam during measurement. The diameter of the capillary that optimizes the scattering-to-absorption ratio at a given X-ray wavelength can be calculated a priori based on fundamental physical properties. However, these well established scattering and absorption principles do not take into account the radiation susceptibility of the sample or the often very limited amounts of precious biological material available for an experiment. Here it is shown that, for biological solution SAXS, capillaries with smaller diameters than those calculated from simple scattering/absorption criteria allow for a better utilization of the available volumes of radiation-sensitive samples. This is demonstrated by comparing two capillary diameters d i (d i = 1.7 mm, close to optimal for 10 keV; and d i = 0.9 mm, which is nominally sub-optimal) applied to study different protein solutions at various flow rates. The use of the smaller capillaries ultimately allows one to collect higher-quality SAXS data from the limited amounts of purified biological macromolecules.


2015 ◽  
Vol 48 (4) ◽  
pp. 1102-1113 ◽  
Author(s):  
Andrew W. Malaby ◽  
Srinivas Chakravarthy ◽  
Thomas C. Irving ◽  
Sagar V. Kathuria ◽  
Osman Bilsel ◽  
...  

Size-exclusion chromatography in line with small-angle X-ray scattering (SEC–SAXS) has emerged as an important method for investigation of heterogeneous and self-associating systems, but presents specific challenges for data processing including buffer subtraction and analysis of overlapping peaks. This paper presents novel methods based on singular value decomposition (SVD) and Guinier-optimized linear combination (LC) to facilitate analysis of SEC–SAXS data sets and high-quality reconstruction of protein scattering directly from peak regions. It is shown that Guinier-optimized buffer subtraction can reduce common subtraction artifacts and that Guinier-optimized linear combination of significant SVD basis components improves signal-to-noise and allows reconstruction of protein scattering, even in the absence of matching buffer regions. In test cases with conventional SAXS data sets for cytochrome c and SEC–SAXS data sets for the small GTPase Arf6 and the Arf GTPase exchange factors Grp1 and cytohesin-1, SVD–LC consistently provided higher quality reconstruction of protein scattering than either direct or Guinier-optimized buffer subtraction. These methods have been implemented in the context of a Python-extensible Mac OS X application known asData Evaluation and Likelihood Analysis(DELA), which provides convenient tools for data-set selection, beam intensity normalization, SVD, and other relevant processing and analytical procedures, as well as automated Python scripts for common SAXS analyses and Guinier-optimized reconstruction of protein scattering.


2004 ◽  
Vol 37 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Masaki Kojima ◽  
Alexander A. Timchenko ◽  
Junichi Higo ◽  
Kazuki Ito ◽  
Hiroshi Kihara ◽  
...  

A new algorithm to refine protein structures in solution from small-angle X-ray scattering (SAXS) data was developed based on restrained molecular dynamics (MD). In the method, the sum of squared differences between calculated and observed SAXS intensities was used as a constraint energy function, and the calculation was started from given atomic coordinates, such as those of the crystal. In order to reduce the contribution of the hydration effect to the deviation from the experimental (objective) curve during the dynamics, and purely as an estimate of the efficiency of the algorithm, the calculation was first performed assuming the SAXS curve corresponding to the crystal structure as the objective curve. Next, the calculation was carried out with `real' experimental data, which yielded a structure that satisfied the experimental SAXS curve well. The SAXS data for ribonuclease T1, a single-chain globular protein, were used for the calculation, along with its crystal structure. The results showed that the present algorithm was very effective in the refinement and adjustment of the initial structure so that it could satisfy the objective SAXS data.


2016 ◽  
Vol 49 (5) ◽  
pp. 1428-1432 ◽  
Author(s):  
Na Li ◽  
Xiuhong Li ◽  
Yuzhu Wang ◽  
Guangfeng Liu ◽  
Ping Zhou ◽  
...  

The beamline BL19U2 is located in the Shanghai Synchrotron Radiation Facility (SSRF) and is its first beamline dedicated to biological material small-angle X-ray scattering (BioSAXS). The electrons come from an undulator which can provide high brilliance for the BL19U2 end stations. A double flat silicon crystal (111) monochromator is used in BL19U2, with a tunable monochromatic photon energy ranging from 7 to 15 keV. To meet the rapidly growing demands of crystallographers, biochemists and structural biologists, the BioSAXS beamline allows manual and automatic sample loading/unloading. A Pilatus 1M detector (Dectris) is employed for data collection, characterized by a high dynamic range and a short readout time. The highly automated data processing pipeline SASFLOW was integrated into BL19U2, with help from the BioSAXS group of the European Molecular Biology Laboratory (EMBL, Hamburg), which provides a user-friendly interface for data processing. The BL19U2 beamline was officially opened to users in March 2015. To date, feedback from users has been positive and the number of experimental proposals at BL19U2 is increasing. A description of the new BioSAXS beamline and the setup characteristics is given, together with examples of data obtained.


Sign in / Sign up

Export Citation Format

Share Document