Automatic Debye–Scherrer elliptical ring extractionviaa computer vision approach

2018 ◽  
Vol 25 (2) ◽  
pp. 439-450
Author(s):  
Saadia Shahzad ◽  
Nazar Khan ◽  
Zubair Nawaz ◽  
Claudio Ferrero

The accurate calibration of powder diffraction data acquired from area detectors using calibration standards is a crucial step in the data reduction process to attain high-quality one-dimensional patterns. A novel algorithm has been developed for extracting Debye–Scherrer rings automatically using an approach based on computer vision and pattern recognition techniques. The presented technique requires no human intervention and, unlike previous approaches, makes no restrictive assumptions on the diffraction setup and/or rings. It can detect complete rings as well as portions of them, and works on several types of diffraction images with various degrees of ring graininess, textured diffraction patterns and detector tilt with respect to the incoming beam.

2001 ◽  
Vol 16 (1) ◽  
pp. 37-41 ◽  
Author(s):  
E. Smit ◽  
B. Manoun ◽  
S. M. C. Verryn ◽  
D. de Waal

The effects of proper drying and grinding of [Fe(Htrz)3](ClO4)2⋅1.85H2O specimens on the quality of X-ray powder patterns are illustrated (Htrz=1H-1,2,4-Triazole). A procedure is suggested to achieve high-quality, reproducible X-ray powder patterns of the compound. The observed powder diffraction data of the compound are reported together with preliminary indices calculated for a monoclinic system with cell parameters a=15.8160 Å, b=20.6134 Å, c=13.0321 Å, β=103.83° and Volume=4125.633 Å3, with reliability factors: M15=10.4, F15=22.0 (0.0100; 68) and space group P21/m. This compound is very similar to the compound [Cu(Hyetrz)3](ClO4)2⋅3H2O and a comparison is made between the cell parameters of the two compounds


2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


2021 ◽  
pp. 1-3
Author(s):  
Carina Schlesinger ◽  
Edith Alig ◽  
Martin U. Schmidt

The structure of the anticancer drug carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, C5H9Cl2N3O2) was successfully determined from laboratory X-ray powder diffraction data recorded at 278 K and at 153 K. Carmustine crystallizes in the orthorhombic space group P212121 with Z = 4. The lattice parameters are a = 19.6935(2) Å, b = 9.8338(14) Å, c = 4.63542(6) Å, V = 897.71(2) ų at 153 K, and a = 19.8522(2) Å, b = 9.8843(15) Å, c = 4.69793(6) Å, V = 921.85(2) ų at 278 K. The Rietveld fits are very good, with low R-values and smooth difference curves of calculated and experimental powder data. The molecules form a one-dimensional hydrogen bond pattern. At room temperature, the investigated commercial sample of carmustine was amorphous.


2005 ◽  
Vol 105 ◽  
pp. 83-88 ◽  
Author(s):  
H. Sitepu ◽  
Heinz Günter Brokmeier

The modelling and/or describing of texture (i.e. preferred crystallographic orientation (PO)) is of critical importance in powder diffraction analysis - for structural study and phase composition. In the present study, the GSAS Rietveld refinement with generalized spherical harmonic (GSH) was used for describing isostatically-pressed molybdite powders neutron powder diffraction data collected in the ILL D1A instrument. The results showed that for texture in a single ND data of molybdite the reasonable crystal structure parameters may be obtained when applying corrections to intensities using the GSH description. Furthermore, the WIMV method was used to extract the texture description directly from a simultaneous refinement with 1368 whole neutron diffraction patterns taken from the sample held in a variety of orientations in the ILL D1B texture goniometer. The results provided a quantitative description of the texture refined simultaneously with the crystal structure. Finally, the (002) molybdite pole-figures were measured using the GKSS TEX2 texture goniometer. The results showed that neutron diffraction is an excellent tool to investigate the texture in molybdite.


Author(s):  
Jacco van de Streek ◽  
Marcus A. Neumann

In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.


Author(s):  
Matthew J. Blom ◽  
Michael J. Brear ◽  
Chris G. Manzie ◽  
Ashley P. Wiese

This paper is the second part of a two part study that develops, validates and integrates a one-dimensional, physics-based, dynamic boiler model. Part 1 of this study [1] extended and validated a particular modelling framework to boilers. This paper uses this framework to first present a higher order model of a gas turbine based cogeneration plant. The significant dynamics of the cogeneration system are then identified, corresponding to states in the gas path, the steam path, the gas turbine shaft, gas turbine wall temperatures and boiler wall temperatures. A model reduction process based on time scale separation and singular perturbation theory is then demonstrated. Three candidate reduced order models are identified using this model reduction process, and the simplest, acceptable dynamic model of this integrated plant is found to require retention of both the gas turbine and boiler wall temperature dynamics. Subsequent analysis of computation times for the original physics-based one-dimensional model and the candidate, reduced order models demonstrates that significantly faster than real time simulation is possible in all cases. Furthermore, with systematic replacement of the algebraic states with feedforward maps in the reduced order models, further computational savings of up to one order of magnitude can be achieved. This combination of model fidelity and computational tractability suggest suggests that the resulting reduced order models may be suitable for use in model based control of cogeneration plants.


2017 ◽  
Vol 50 (6) ◽  
pp. 1821-1829 ◽  
Author(s):  
Kazimierz Skrobas ◽  
Svitlana Stelmakh ◽  
Stanislaw Gierlotka ◽  
Bogdan F. Palosz

NanoPDF64is a tool designed for structural analysis of nanocrystals based on examination of powder diffraction data with application of real-space analysis. The program allows for fast building of models of nanocrystals consisting of up to several hundred thousand atoms with either cubic or hexagonal close packed structure. The nanocrystal structure may be modified by introducing stacking faults, density modulation waves (i.e.the core–shell model) and thermal atomic vibrations. The program calculates diffraction patterns and, by Fourier transform, the reduced pair distribution functionsG(r) for the models. ExperimentalG(r)s may be quantitatively analyzed by least-squares fitting with an analytical formula.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongyan Zang ◽  
Yue Yuan ◽  
Xinyuan Wei

This paper proposes three types of one-dimensional piecewise chaotic maps and two types of symmetrical piecewise chaotic maps and presents five theorems. Furthermore, some examples that satisfy the theorems are constructed, and an analysis and model of the dynamic properties are discussed. The construction methods proposed in this paper have a certain generality and provide a theoretical basis for constructing a new discrete chaotic system. In addition, this paper designs a pseudorandom number generator based on piecewise chaotic map and studies its application in cryptography. Performance evaluation shows that the generator can generate high quality random sequences efficiently.


Author(s):  
Pranav Ghadge ◽  
Riddhik Tilawat ◽  
Prasanna Sand ◽  
Parul Jadhav

Satellite system advances, remote sensing and drone technology are continuing. These progresses produce high-quality images that need efficient processing for smart agricultural applications. These possibilities to merge computer vision and artificial intelligence in agriculture are exploited with recent deep educational technology. This involves essential phenomena of data and huge quantities of data stored, analysed and used when making decisions. This paper demonstrates how computer vision in agriculture can be used.


Sign in / Sign up

Export Citation Format

Share Document