scholarly journals The new X-ray absorption fine-structure beamline with sub-second time resolution at the Taiwan Photon Source

2021 ◽  
Vol 28 (3) ◽  
pp. 930-938
Author(s):  
Chih-Wen Pao ◽  
Jeng-Lung Chen ◽  
Jyh-Fu Lee ◽  
Meng-Che Tsai ◽  
Chi-Yi Huang ◽  
...  

The new TPS 44A beamline at the Taiwan Photon Source, located at the National Synchrotron Radiation Research Center, is presented. This beamline is equipped with a new quick-scanning monochromator (Q-Mono), which can provide both conventional step-by-step scans (s-scans) and on-the-fly scans (q-scans) for X-ray absorption fine-structure (XAFS) spectroscopy experiments, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectral measurements. Ti and Te K-edge XAFS spectra were used to demonstrate the capability of collecting spectra at the limits of the working energy range. The Ni and Cu K-edge XAFS spectra for a Cu-doped Pt/Ni nanocomposite were acquired to test the performance of the newly commissioned beamline. Pt L 3- and Ru K-edge quick-scanning XAFS (QXAFS) spectra for standard Pt and Ru foils, respectively, revealed the stability of the q-scan technique. The results also demonstrated the beamline's ability to collect XAFS spectra on a sub-second timescale. Furthermore, a Zn(s)|Zn2+ (aq)|Cu(s) system was tested to indicate that the states of the Zn electrode could be observed in real time for charging and discharging conditions using an in situ/operando setup combined with QXAFS measurements.

Author(s):  
Kazumasa Murata ◽  
Junya Ohyama ◽  
Atsushi Satsuma

In the present study, the redispersion behavior of Ag particles on ZSM-5 in the presence of coke was observed using in situ X-ray absorption fine structure (XAFS) spectroscopy.


2016 ◽  
Vol 1133 ◽  
pp. 429-433
Author(s):  
Siti Nooraya Mohd Tawil ◽  
Shuichi Emura ◽  
Daivasigamani Krishnamurthy ◽  
Hajime Asahi

Local structures around gadolinium atoms in rare-earth (RE)-doped InGaGdN thin films were studied by means of fluorescence extended X-ray absorption fine structure (EXAFS) measured at the Gd LIII-edges. The samples were doped with Gd in-situ during growth by plasma-assisted molecular beam epitaxy (PAMBE). Gd LIII-edge EXAFS signal from the GaGdN, GdN and Gd foil were also measured as reference. The X-ray absorption near edge structure (XANES) spectra around Gd LIII absorption edge of InGaGdN samples observed at room temperature indicated the enhancement of intensities with the increase of Gd composition. Further EXAFS analysis inferred that the Gd atoms in InGaN were surrounded by similar atomic shells as in the case of GaGdN with the evidence indicating majority of Gd atoms substituted into Ga sites of InGaGdN. A slight elongation of bond length for the 2nd nearest-neighbor (Gd–Ga) of sample with higher Gd concentration was also observed.


Author(s):  
Quek Hsiao Pei ◽  
Shafinaz Shahir ◽  
Liu Tao ◽  
Wan Azlina Ahmad

Several types of microorganisms have been reported to reduce Cr(VI) to the less toxic Cr(III) via enzymatic reactions. The main purpose of this study is to determine the reduction of Cr(VI) by a locally isolated bacterium, Acinetobacter haemolyticus (A. haemolyticus) using the x-ray absorption fine structure (XAFS) spectroscopy. XAFS analysis consisted of both the x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra. XANES spectra of the rinsed Cr(VI)-laden A. haemolyticus biomass indicated that chromium was only present in the form of Cr (III). The nearest atoms coordinated to Cr(III) were oxygens in an octahedral geometry. The longer Cr-O bond lengths (~1.97 Å) obtained from the EXAFS spectra corroborated the presence of chromium as Cr(III) bonded to oxygen. These findings demonstrate the ability of A. haemolyticus to reduce Cr(VI) to Cr(III) that was bound to oxygen atoms of the ligands in A. haemolyticus.


2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2003 ◽  
Vol 107 (46) ◽  
pp. 12562-12565 ◽  
Author(s):  
Shuji Matsuo ◽  
Ponnusamy Nachimuthu ◽  
Dennis W. Lindle ◽  
Hisanobu Wakita ◽  
Rupert C. C. Perera

2015 ◽  
Vol 22 (1) ◽  
pp. 124-129 ◽  
Author(s):  
Weiwei Gu ◽  
Hongxin Wang ◽  
Kun Wang

A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n(n= −2, −1, 0) (1,2,3) and a 1-hexene adduct Ni[S2C2(CF3)2]2(C6H12) (4) have been examined by NiK-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectroscopies. Ni XANES for1–3reveals clear pre-edge features and approximately +0.7 eV shift in the NiK-edge position for `one-electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for1,2and3(2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ∼0.022 Å for each `one-electron' oxidation. The changes in NiK-edge energy positions and Ni—S distances are consistent with the `non-innocent' character of the dithiolene ligand. The Ni—C interactions at ∼3.0 Å are analyzed and the multiple-scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1-hexene adduct4presents no pre-edge feature, and its NiK-edge position shifts by −0.8 eV in comparison with its starting dithiolene complex3. Consistently, EXAFS also showed that the Ni—S distances in4elongate by ∼0.046 Å in comparison with3. The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π-electron density to the LUMO of3as suggested by UV/visible spectroscopy in the literature.


1997 ◽  
Vol 11 (16n17) ◽  
pp. 745-748 ◽  
Author(s):  
Rebekah Min-Fang Hsu ◽  
Kai-Jan Lin ◽  
Cheng Tien ◽  
Lin-Yan Jang

X-ray absorption fine structure XAFS spectroscopy has been used to determine the valence system for the Fe atom in ilmenite, FeTiO3 . This is the first XAFS data in FeTiO3 to our knowledge. The α- Fe2O3 data served as the standard in determining the ionization of the Fe atom in FeTiO3 . Observation of intensity and k-space are consistent. There was no evidence of mixed valence on comparing the FeTiO3 near edge X-ray absorption spectrum with α- Fe2O3 data. The absorption spectra suggest that iron is in the trivalent state in ilmenite.


2003 ◽  
Vol 798 ◽  
Author(s):  
V. Katchkanov ◽  
J. F. W. Mosselmans ◽  
S. Dalmasso ◽  
K. P. O'Donnell ◽  
R. W. Martin ◽  
...  

ABSTRACTThe local structure around Er and Eu atoms introduced into GaN epilayers was studied by means of Extended X-ray Absorption Fine Structure above the appropriate rare-earth X-ray absorption edge. The samples were doped in situ during growth by Molecular Beam Epitaxy. The formation of ErN clusters was found in samples with high average Er concentrations of 32±6% and 12.4±0.8%, estimated by Wavelength Dispersive X-ray analysis. When the average Er concentration is decreased to 6.0±0.2%, 1.6±0.2% and 0.17±0.02%, Er is found in localised clusters of ErGaN phase with high local Er content. Similar behaviour is observed for Eu-doped samples. For an average Eu concentration of 30.5±0.5% clusters of pure EuN occur. Decreasing the Eu concentration to 10.4±0.5% leads to EuGaN clusters with high local Eu content. However, for a sample with an Eu concentration of 14.2±0.5% clustering of Eu was not observed.


Sign in / Sign up

Export Citation Format

Share Document