scholarly journals Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)

2021 ◽  
Vol 28 (3) ◽  
pp. 688-706
Author(s):  
H. P. Liermann ◽  
Z. Konôpková ◽  
K. Appel ◽  
C. Prescher ◽  
A. Schropp ◽  
...  

The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.

2017 ◽  
Vol 88 (5) ◽  
pp. 053501 ◽  
Author(s):  
M. A. Beckwith ◽  
S. Jiang ◽  
A. Schropp ◽  
A. Fernandez-Pañella ◽  
H. G. Rinderknecht ◽  
...  

2020 ◽  
Vol 36 ◽  
pp. 100813
Author(s):  
Y. Maeda ◽  
Y. Hironaka ◽  
T. Iwasaki ◽  
K. Kawasaki ◽  
Y. Sakawa ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (31) ◽  
pp. 16087-16093 ◽  
Author(s):  
Xiangyu Liu ◽  
Qi Yang ◽  
Zhiyong Su ◽  
Sanping Chen ◽  
Gang Xie ◽  
...  

A novel 3D energetic coordination polymer of azide–Cu(ii), Cu(3,5-DNBA)(N3), was synthesized and structurally characterized by single crystal X-ray diffraction, where 3,5-DNBA represents 3,5-dinitrobenzoic acid.


2014 ◽  
Vol 70 (a1) ◽  
pp. C758-C758
Author(s):  
Dominique Laniel ◽  
Elena Sebastiao ◽  
Cyril Cook ◽  
Muralee Murugesu ◽  
Serge Desgreniers

Nitrogen-rich carbon nitride materials hold the promise of constituting novel high density energetic materials if recoverable as metastable polymeric networks of single-bonded atoms at ambient conditions. Upon transition to a lowest-energy configuration, this high pressure synthesized nitrogen-heavy material would release a large amount of energy. In this work, two nitrogen-rich molecular precursors, namely, 5'-bis(1H-tetrazolyl)amine (BTA) and cyanuric triazide (CTA), were studied in their condensed states at elevated pressures and room temperature. Powder x-ray diffraction using synchrotron radiation and micro-Raman spectroscopy were carried out to pressures as high as 12.9 and 59.6 GPa, for BTA and CTA, respectively. In our study, dense BTA is shown to conserve its room condition crystalline structure, an orthorhombic unit cell (Pbca), up to the highest pressure. In the case of CTA, results of Raman spectroscopy and x-ray diffraction indicate structural changes between 29.6 and 33.4 GPa. From numerical simulations of dense CTA [1], a phase transition into either tritetrazole (hexagonal lattice, P-6) or the sought-after polymeric CTA (monoclinic lattice, P21) is expected to take place at a pressure close to 30 GPa. Preliminary results of x-ray diffraction data indicate a transition from a hexagonal to a monoclinic unit cell with parameters similar to those predicted. Moreover, theoretically calculated polymeric nitrogen Raman peaks [2] are well matched to those observed for the high-density phase of CTA [1]. Studies of BTA and CTA under extreme conditions provide a deeper understanding of the behaviour of dense nitrogen-rich materials and guidance for further developments of high energy density compounds.


2019 ◽  
Vol 26 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Toshinori Yabuuchi ◽  
Akira Kon ◽  
Yuichi Inubushi ◽  
Tadashi Togahi ◽  
Keiichi Sueda ◽  
...  

An experimental platform using X-ray free-electron laser (XFEL) pulses with high-intensity optical laser pulses is open for early users' experiments at the SACLA XFEL facility after completion of the commissioning. The combination of the hard XFEL and the high-intensity laser provides capabilities to open new frontiers of laser-based high-energy-density science. During the commissioning phase, characterization of the XFEL and the laser at the platform has been carried out for the combinative utilization as well as the development of instruments and basic diagnostics for user experiments. An overview of the commissioning and the current capabilities of the experimental platform is presented.


Sign in / Sign up

Export Citation Format

Share Document