scholarly journals The structure of denisovite, a fibrous nanocrystalline polytypic disordered `very complex' silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction

IUCrJ ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 223-242 ◽  
Author(s):  
Ira V. Rozhdestvenskaya ◽  
Enrico Mugnaioli ◽  
Marco Schowalter ◽  
Martin U. Schmidt ◽  
Michael Czank ◽  
...  

Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data byab initiostructure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters area= 31.024 (1),b= 19.554 (1) andc= 7.1441 (5) Å, β = 95.99 (3)°,V= 4310.1 (5) Å3and space groupP12/a1. The structure consists of three topologically distinct dreier silicate chains,viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to thezaxis and form a layer parallel to (100). Water molecules and K+cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to theirzposition along these walls, with displacements between neighbouring layers being either Δz=c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections withlodd, but continuous diffuse streaks parallel toa* instead. Only reflections withleven are sharp. The diffuse scattering is caused by (100) nanolamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100).

2010 ◽  
Vol 92 ◽  
pp. 125-130
Author(s):  
Ming Guo Ma ◽  
Jie Fang Zhu ◽  
Run Cang Sun

Luminescent wollastonite-CePO4 nanocomposites have been successfully synthesized using Ca(NO3)2•4H2O, Na2SiO3•9H2O, and CePO4 by hydrothermal method at 200 oC for 24 h. The precursor nanorods with diameters about 20 nm and lengths several micrometers were obtained by hydrothermal treatment, and after calcination at 600 oC for 3h, the precursor nanorods transformed to wollastonite-CePO4 nanocomposites. Considering the experiment result, a possible growth of the precursor nanorods via the rolling mechanism was also proposed. This is the first report about the synthesis of luminescent wollastonite-CePO4 nanocomposites. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), and photoluminescence (PL).


Author(s):  
Dmitry Batuk ◽  
Maria Batuk ◽  
Artem M. Abakumov ◽  
Joke Hadermann

The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).


2007 ◽  
Vol 353-358 ◽  
pp. 2163-2166
Author(s):  
Ming Yang ◽  
Guo Qing Zhou ◽  
Jiang Guo Zhao ◽  
Zhan Jun Li

Nanocubes, monodispersed nanocrystals and nanospheres of Au have been prepared by a simple reaction between HAuCl4·4H2O, NaOH and NH2OH·HCl in the presence of gelatin. The role of gelatin and the affection of pH in producing the nanoparticles of Au were discussed. The products were characterized by X-ray powder diffraction, transmission electron microscopy, and UV-visible absorption spectroscopy. The sizes of the monodispersed nanocrystals of Au were estimated by Debye-Scherrer formula according to XRD spectrum.


2016 ◽  
Vol 22 (S3) ◽  
pp. 1610-1611
Author(s):  
Jonathan E. Cowen ◽  
Ashley E. Harris ◽  
Cecelia C. Pena ◽  
Stephen C. Bryant ◽  
Allison J. Christy ◽  
...  

2009 ◽  
Vol 64 (8) ◽  
pp. 922-928 ◽  
Author(s):  
Manuel Christian Schaloske ◽  
Hansjürgen Mattausch ◽  
Viola Duppel ◽  
Lorenz Kienle ◽  
Arndt Simon

The compounds Pr6(C2)Br10, Pr10(C2)2Br15 and Pr14(C2)3Br20 were prepared from PrBr3 and the appropriate amounts of Pr and C and characterized by X-ray structure analyses of single crystals. All three compounds crystallize in space group P1 with lattice parameters a = 7.571(2), b = 9.004(2), c = 9.062(2) Å ,α = 108.57(3), β = 97.77(3), γ = 106.28(3)◦ for Pr6(C2)Br10; a = 9.098(2), b = 10.127(2), c = 10.965(2) A° , α = 70.38(3), β = 66.31(3), γ = 70.84(3)◦ for Pr10(C2)2Br15; a = 9.054(2), b = 10.935(2), c = 13.352(3) Å , α = 86.27(3), β = 72.57(3), γ = 66.88(3)◦ for Pr14(C2)3Br20. They are members of a general series Ln4n+2(C2)nBr5n+5 and isostructural with the corresponding iodides known for Ln = La, Ce, Pr. Pr6(C2)Br10 was further characterized via transmission electron microscopy techniques


2014 ◽  
Vol 919-921 ◽  
pp. 2109-2111 ◽  
Author(s):  
Wei Jun Shan ◽  
Qiang Yan ◽  
Du Li ◽  
Da Wei Fang ◽  
Shu Liang Zang

Ag2Se nanocrystal was successfully prepared by ultrasonic synthesis in water and ethanol systems at an ambient pressure. The powder of selenium was used as the selenium ion source. The size of the nanocrystals is in the scope of 10-20nm. The products were characterized by some means including X-ray Powder Diffraction (XRD) and Transmission Electron Microscopy (TEM) which was used to study the thermostability of the product. The result of the experiments indicated that the concentration of the reactant, the pH of the solution, the react temperature and the surfactant had some important influence on the formation and the size of the Ag2Se nanoparticles. The method we reported here is proved to be a new and an easy way to prepare the nanocrystals of metal chalcogenide.


2018 ◽  
Vol 18 (4) ◽  
pp. 2441-2451 ◽  
Author(s):  
Magdalena O. Cichocka ◽  
Yannick Lorgouilloux ◽  
Stef Smeets ◽  
Jie Su ◽  
Wei Wan ◽  
...  

2011 ◽  
Vol 189-193 ◽  
pp. 1036-1039
Author(s):  
Jing Ling Ma ◽  
Jiu Ba Wen ◽  
Yan Fu Yan

The precipitates of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt %) anode alloy were studied by scanning electron microscopy, X-ray microanalysis, high resolution transmission electron microscopy and selected area electron diffraction analyses in the present work. The results show that the alloy mainly contains hexagonal structure MgZn2 and tetragonal structure Al2CeZn2 precipitates. From high resolution transmission electron microscopy and selected area electron diffraction, aluminium, Al2CeZn2 and MgZn2 phases have [0 1 -1]Al|| [1 -10]Al2CeZn2|| [-1 1 0 1]MgZn2orientation relation, and Al2CeZn2 and MgZn2 phases have the [0 2 -1]Al2CeZn2|| [0 1 -10]MgZn2orientation relation.


Sign in / Sign up

Export Citation Format

Share Document