A novel representative in the rare family of trivanadates, KMn2V3O10: synthesis, crystal structure and magnetic properties

Author(s):  
Olga Yakubovich ◽  
Larisa Shvanskaya ◽  
Zlata Pchelkina ◽  
Olga Dimitrova ◽  
Anatoliy Volkov ◽  
...  

Potassium dimanganese trivanadate, KMn2V3O10, was synthesized hydrothermally and its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes with triclinic symmetry in space group P\bar 1 with unit-cell parameters of a = 6.912 (5), b = 6.993 (5), c = 9.656 (5) Å, α = 101.858 (5), β = 102.627 (5), γ = 100.669 (5)°, Z = 2 and V = 432.6 (5) Å3. Its structure is built from tetramers of MnO6 octahedra sharing edges and trimers of VO4 tetrahedra sharing vertices. These main structural fragments are linked in a three-dimensional framework with channels occupied by potassium ions. The transformation of this structure to that of interconnected NaCa3Mn(V3O10)(V2O7) is discussed. The title compound orders antiferromagnetically at T N = 8.2 K due to the magnetic exchange interactions between tetramers of Mn octahedra through VO4 tetrahedra. First-principles calculations show the magnetic couplings via Mn—O—Mn and Mn—O—V—O—Mn pathways.

2018 ◽  
Vol 74 (8) ◽  
pp. 936-943
Author(s):  
Galina V. Kiriukhina ◽  
Olga V. Yakubovich ◽  
Ekaterina M. Kochetkova ◽  
Olga V. Dimitrova ◽  
Anatoliy S. Volkov

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63 mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A + ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.


2019 ◽  
Vol 75 (5) ◽  
pp. 504-507 ◽  
Author(s):  
Hui-Ru Chen

Excellent fluorescence properties are exhibited by d 10 metal compounds. The novel three-dimensional ZnII coordination framework, poly[[{μ2-bis[4-(2-methyl-1H-imidazol-1-yl)phenyl] ether-κ2 N 3:N 3′}(μ2-furan-2,5-dicarboxylato-κ2 O 2:O 5)zinc(II)] 1.76-hydrate], {[Zn(C6H2O5)(C20H18N4O)]·1.76H2O} n , has been prepared and characterized using IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The crystal structure analysis revealed that the compound exhibits a novel fourfold interpenetrating diamond-like network. This polymer also displays a strong fluorescence emission in the solid state at room temperature.


Author(s):  
Bei Zhang ◽  
Gangxing Guo ◽  
Fang Lu ◽  
Ying Song ◽  
Yong Liu ◽  
...  

Low temperature is a major limiting factor for plant growth and development. Dehydrin proteins are generally induced in response to low-temperature stress. In previous research, a full-length dehydrin gene,PicW2, was isolated fromPicea wilsoniiand its expression was associated with hardiness to cold. In order to gain insight into the mechanism of low-temperature tolerance by studying its three-dimensional crystal structure, prokaryotically expressed PicW2 dehydrin protein was purified using chitosan-affinity chromatography and gel filtration, and crystallized using the vapour-diffusion method. The crystal grew in a condition consisting of 0.1 MHEPES pH 8.0, 25%(w/v) PEG 3350 using 4 mg ml−1protein solution at 289 K. X-ray diffraction data were collected from a crystal at 100 K to 2.82 Å resolution. The crystal belonged to space groupC121, with unit-cell parametersa= 121.55,b= 33.26,c= 73.39 Å, α = γ = 90.00, β = 109.01°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.87 Å3 Da−1and a solvent content of 57.20%. Owing to a lack of structures of homologous dehydrin proteins, molecular-replacement trials failed. Data collection for selenium derivatization of PicW2 and crystal structure determination is currently in progress.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 18
Author(s):  
G. E. Delgado ◽  
P. Grima-Gallardo ◽  
J. A. Aitken ◽  
A. Cárdenas ◽  
I. Brito

The Cu2FeIn2Se5 alloy, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, was synthesized by the melt and annealing technique. The differential thermal analysis (DTA) indicates that this compound melts at 1017 K. The crystal structure of this new quaternary compound was established using powder X-ray diffraction. Cation distribution analysis indicates that this material crystallizes in a P-chalcopyrite structure, space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3. Cu2FeIn2Se5 is a new adamantane type compound derivative of the sphalerite structure, and consists of a three-dimensional arrangement of distorted CuSe4, FeSe4, and InSe4 tetrahedral connected by common faces.


2005 ◽  
Vol 20 (3) ◽  
pp. 207-211 ◽  
Author(s):  
S. N. Achary ◽  
A. K. Tyagi ◽  
S. K. Kulshreshtha ◽  
O. D. Jayakumar ◽  
P. S. R. Krishna ◽  
...  

The low-cristobalite-type modification of Al0.5Ga0.5PO4 is prepared by annealing the amorphous precipitate of stoichiometric phosphate at 1300 °C. The phase purity of the sample is ascertained by powder X-ray diffraction. The crystal structure is refined by Rietveld refinements of the neutron and X-ray diffraction data of the polycrystalline powder. This compound crystallizes in an orthorhombic lattice with unit cell parameters, a=7.0295(8), b=7.0132(8), and c=6.9187(4) Å, V=341.08(6) Å3, Z=4 (Space group C 2221, No. 20). The crystal structure analysis reveals the random distribution of the Al3+ and Ga3+ having tetrahedral coordination with typical M–O (M=Al3+:Ga3+) bond lengths as 1.74 Å. Similarly, the P5+ have tetrahedral coordination with typical P–O bond lengths 1.52–1.54 Å. The Mo4 and PO4 tetraheda are linked by common corners forming a three-dimensional framework lattice. The details of the crystal structure are presented in this paper.


2001 ◽  
Vol 56 (11) ◽  
pp. 1188-1195 ◽  
Author(s):  
Jörg Dalluhn ◽  
Hans-Heinrich Pröhl ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

The moisture-sensitive title compounds were obtained in good yields by treating the corresponding silver salts AgN(SO2R)2 with the thiocarbamoyl chloride Me2NC(S)Cl in acetonitrile. In the NMR solution spectra of the novel thioureas, as recorded at room temperature for 13C and up to 120 °C for 1H, the Me2N group invariably gives rise to two distinct resonances, reflecting unusually high barriers to rotation about the C(S)-NMe2 bond. The crystal structure of the ditosyl compound (triclinic, space group P1̅, X-ray diffraction at -130 °C) contains two independent molecules A and B, in which the bond lengths and angles are nearly identical, whereas the conformations exhibit pronounced discrepancies. The amide N and thiocarbonyl C atoms have trigonal-planar environments, but the S -N -S planes are strikingly rotated into approximately perpendicular orientations relative to the planar C2N-C(S)-N moieties. Other remarkable features of the molecular structures are the exceedingly long C(S)-NS2 bonds [mean: 145.4(3) pm] and the concomitantly short C -S and C(S)-NC2 bonds [mean values: 164.8(2), 132.6(3) pm]. The packing is governed by a three-dimensional system of weak hydrogen bonds and may be viewed as a self-clathrate, in which (B)2 dimers constructed from C-H···S=C interactions are inserted as guest species into parallel tunnels between (A)∞ tapes based upon short C-H···O=S contacts.


1980 ◽  
Vol 35 (11) ◽  
pp. 1366-1372 ◽  
Author(s):  
Reinhild Böhme ◽  
Jörg Rath ◽  
Bernd Grunwald ◽  
Gerhard Thiele

The mixed valence thallium chloride "Tl2Cl3" is polymorphous. Raman spectra and comparable lattice translations suggest similar structures of both modifications. The crystal structure of the rhombic α-Tl2Cl3 crystallizing in yellow, needle-shaped crystals, has been determined from three-dimensional X-ray diffraction data. The unit cell with cell parameters a= 1474.8(5) pm, b - 2508.7(6) pm and c = 1267.6(2) pm contains 16 formula units distributed on 24 independent atom positions. The compound is a mixed valence thallium(I)-hexachlorothallate(III) Tl3[TlCl6] because three of the nine independent Tl atoms are surrounded octahedrally by CI atoms in distances of 250-265 pm, while the other Tl atoms have seven, eight or nine CI neighbours variing between 306 and 383 pm.β-Tl3[TlCl6] forms pale yellow thin platelets and crystallizes monoclinic with cell parameters a = 2549.4(13) pm, 6 = 1469.9(8) pm, c = 1308.5(12) pm and β = 108.58°.


2008 ◽  
Vol 63 (11) ◽  
pp. 1339-1342 ◽  
Author(s):  
Shuxi Zhou ◽  
Yanxiong Ke ◽  
Hongliang Zou ◽  
Tianhua Liu ◽  
Fang Zhu ◽  
...  

Abstract Utilizing unsymmetrical 1,2,4-benzenetricarboxylate (1,2,4-BTC) as a ligand, a complex [Mn2.5(1,2,4-BTC)- (OH)2(H2O)] was synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction. The coordination polymer crystallizes in the triclinic space group P1̅, with cell parameters a = 5.7702(5), b = 8.0269(6), c = 12.1378(9) Å, α = 88.000(1)°, β = 81.493(1)◦, γ = 88.569(1)°, and Z = 2. In the the crystal, there are Mn- O-Mn sheets which are further connected through the 1,2,4-BTC ligands into a 3D framework, which is rare in the coordination chemistry originating from transition metal ions and unsymmetrical polycarboxylates.


Author(s):  
Nataliya E. Novikova ◽  
Victoria G. Grossman ◽  
Bair G. Bazarov ◽  
Igor A. Verin ◽  
Alexander P. Dudka ◽  
...  

Single crystals of Tl4.86Fe0.82Hf1.18(MoO4)6 [a = b = 10.5550 (3), c = 37.7824 (9) Å, γ = 120°] are obtained by the self-flux method in the Tl2MoO4–Fe2(MoO4)3–Hf(MoO4)2 system. On the differential scanning calorimetry curve in the temperature range 320–350 K and at T ∼ 690 K, endothermic peaks are observed. The second harmonic generation test shows an excess of the signal of the quartz standard by almost three times at room temperature. In the range 320–340 K its intensity decreases by almost three times and at T ∼ 700 K it drops to zero. In the same interval, the temperature dependences of the unit-cell parameters and volume show stepwise changes. According to the X-ray diffraction data, the crystal structure consists of nonpolar and polar domains with different local symmetries. The structure is a three-dimensional framework consisting of alternating (Hf,Fe)O6 octahedra connected by MoO4 tetrahedra. Hf and Fe atoms occupy mixed Hf/Fe positions with different probabilities: 0.77:0.23, 0.50:0.50 and 0.32:0.68. Tl cations are located inside the framework in zigzag channels extended along the a and b axes. The thallium arrangement is disordered, i.e. it involves additional positions and vacancies. The complex crystal structure has been solved using the nonstandard space group R1, taking into account the local symmetry R 3 c for the Mo atoms and mixed Hf/Fe positions mainly occupied by Hf atoms. The possible paths of ion transport are analyzed. The energy required to overcome the potential barrier between sites of Tl cations to migrate, which corresponds to the activation energy of conductivity, is estimated. The ion current is shown to be most probable in the ab plane.


2011 ◽  
Vol 76 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Barbara Hachuła ◽  
Monika Pędras ◽  
Maria Nowak ◽  
Joachim Kusz ◽  
Danuta Pentak ◽  
...  

? novel manganese(II) coordination polymer, catena-(2- methylimidazolium bis(?2-chloro)-aqua-chloromanganese(II)), {(C4H7N2)[MnCl3(H2O)]}n, was synthesized, structurally characterized by FTIR spectroscopy and confirmed by single crystal X-ray diffraction analysis. Thermogravimetric analysis and EPR spectroscopy of the compound were also performed. The colourless crystals of the complex were monoclinic, space group P21/c, with the cell parameters a = 11.298(2) ?, b = 7.2485(14) ?, c = 14.709(5) ?, ? = 128.861(18)?, V = 938.0(5) ?3, Z = 4 and R1 = 0.03. The title compound consisted of onedimensional infinite anionic chains [MnCl3(H2O)]n and isolated 2- methylimidazolium cations. The Mn(II) atom was octahedrally coordinated to four bridging chloride anions [Mn-Cl = 2.5109(6) - 2.5688(7) ?], one terminal chloride anion [Mn-Cl = 2.5068(11) ?] and a H2O molecule [Mn-O = 2.2351(17) ?]. A three-dimensional layer structure was constructed via hydrogen bonds and by weak ?-? stacking interactions. A four-step thermal decomposition occurred in the temperature range 25-900?C under nitrogen.


Sign in / Sign up

Export Citation Format

Share Document