A new ZnII coordination polymer based on 4-(pyridin-4-yl)benzoic and formic acids: in-situ synthesis, crystal structure and luminescence properties

2018 ◽  
Vol 74 (10) ◽  
pp. 1133-1137 ◽  
Author(s):  
Fuming Luo ◽  
Guodong Tang ◽  
Jinfang Zhang

The title compound, poly[(μ2-formato-κ3 O,O′:O)[μ2-4-(pyridin-4-yl)benzoato-κ3 N:O,O′]zinc(II)], [Zn(C12H8NO2)(HCOO)] n , has been synthesized in situ and characterized by thermogravimetric analysis (TGA) and single-crystal and powder X-ray diffraction analyses. The polymer contains two independent structural units in the asymmetric unit. These are constructed from Zn2+ ions, 4-(pyridin-4-yl)benzoate (4-pbc) bridges and in-situ-generated formate ligands, forming two similar two-dimensional (2D) layer structures. These similar 2D layers are arranged alternately and are linked with each other by dense C—H...O hydrogen bonds to generate a three-dimensional (3D) supramolecular framework. The crystal is pseudomerohedrally twinned about [201]. Compared with free 4-Hpbc, the polymer exhibits a red shift and significantly enhanced solid-state luminescence properties.

2018 ◽  
Vol 2 (4) ◽  
pp. 24 ◽  
Author(s):  
Anton Davydok ◽  
Thomas Cornelius ◽  
Zhe Ren ◽  
Cedric Leclere ◽  
Gilbert Chahine ◽  
...  

The three-point bending behavior of a single Au nanowire deformed by an atomic force microscope was monitored by coherent X-ray diffraction using a sub-micrometer sized hard X-ray beam. Three-dimensional reciprocal-space maps were recorded before and after deformation by standard rocking curves and were measured by scanning the energy of the incident X-ray beam during deformation at different loading stages. The mechanical behavior of the nanowire was visualized in reciprocal space and a complex deformation mechanism is described. In addition to the expected bending of the nanowire, torsion was detected. Bending and torsion angles were quantified from the high-resolution diffraction data.


Nano Energy ◽  
2016 ◽  
Vol 27 ◽  
pp. 147-156 ◽  
Author(s):  
Chaojiang Niu ◽  
Xiong Liu ◽  
Jiashen Meng ◽  
Lin Xu ◽  
Mengyu Yan ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


2018 ◽  
Vol 143 ◽  
pp. 44-48 ◽  
Author(s):  
Zhonghe Huang ◽  
Leyun Wang ◽  
Bijin Zhou ◽  
Torben Fischer ◽  
Sangbong Yi ◽  
...  

2014 ◽  
Vol 777 ◽  
pp. 118-123 ◽  
Author(s):  
Yujiro Hayashi ◽  
Yoshiharu Hirose ◽  
Daigo Setoyama

In situ three-dimensional crystallographic orientation mapping in plastically-deformed polycrystalline iron is demonstrated using a modified three-dimensional x-ray diffraction method. This voxel-by-voxel measurement method enables the observation of intragranular orientation distribution. The experiment is performed using coarse-grained ferrite with a mean grain size of ~ 60 μm and an incident x-ray beam with a beam size of 20 μm × 20 μm. Grains averagely rotate approximately toward the <110> preferred orientation of body-centered cubic uniaxial tensile texture. Intragranular orientation distributions are spread as the tensile strain increases to 10.7 %. Furthermore, intragranular multidirectional rotations are observed in grains near the <100> and <111> corners in the inverse pole figure.


2014 ◽  
Vol 70 (12) ◽  
pp. 1138-1142 ◽  
Author(s):  
Le Li ◽  
Jian-Qing Tao

A twofold interpenetrating three-dimensional CdIIcoordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single-crystal X-ray diffraction. The asymmetric unit consists of a divalent CdIIatom, one 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene (1,3-BMIB) ligand and one fully deprotonated 5-nitrobenzene-1,3-dicarboxylate (NO2-BDC2−) ligand. The coordination sphere of the CdIIatom consists of five O-donor atoms from three different NO2-BDC2−ligands and two imidazole N-donor atoms from two different 1,3-BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2-BDC ligand links three CdIIatomsviaa μ1-η1:η1chelating mode and a μ2-η2:η1bridging mode. The title compound is a twofold interpenetrating 3,5-connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.


2012 ◽  
Vol 67 (11) ◽  
pp. 1191-1196 ◽  
Author(s):  
Chong-Zhen Mei ◽  
Kai-Hui Li ◽  
Hai-Hua Li

Self-assembly of silver(I) cations, flexible 2,2ʹ-oxydibenzoate anions (L2-), and 1,2-bis(4- pyridyl)ethane (bpa) ligands affords a new three-dimensional supramolecular architecture, {[Ag2(L)(bpa)2]⋅(H2O)4}n (1), which has been characterized by elemental analysis, IR, TGA, PXRD, and single-crystal X-ray diffraction. Complex 1exhibits layers further connected through hydrogen bonding and π...π stacking interactions. Its photoluminescence was also investigated.


2014 ◽  
Vol 70 (a1) ◽  
pp. C349-C349
Author(s):  
Shu Tsukui ◽  
Fumiko Kimura ◽  
Kimihiko Mizutani ◽  
Bunzo Mikami ◽  
Tsunehisa Kimura

Elucidation of the three-dimensional structure of biomolecules is of great importance because the three-dimensional structure is closely related to biological functions. X-ray single-crystal analysis is powerful method to analyze the structure, but it is sometimes difficult to grow a crystal sufficiently large for conventional or even synchrotron single-crystal X-ray measurement. We recently reported on a magnetically oriented microcrystal array (MOMA) [1] that is a composite in which microcrystals are aligned three-dimensionally in polymer matrix. Microcrystals are suspended in an ultraviolet-curable monomer and rotated non-uniformly in a static magnetic field to achieve three dimensional crystal alignment. Then, the monomer is photopolymerized to maintain the achieved alignment. We have successfully demonstrated that X-ray single crystal structure determinations through MOMA are possible for low molecular weight compounds [2] as well as protein. [3] However, the method with MOMA has two drawbacks: (i) the sample microcrystals cannot be recovered from a MOMA, which is especially serious problem in case of proteins, and (ii) the alignment is deteriorated during the consolidation process, causing low resolution. In this study, we attempt to solve these problems. First, we use a water-soluble sol as microcrystalline media and consolidate the alignment by gelation, which makes the recovery of microcrystals possible. Second, a magnetically oriented microcrystal suspension (MOMS) is used for in-situ X-ray diffraction measurement, which makes the sample recovery possible and enhances the resolution. We use lysozyme as a model protein for both cases. The in-situ method with in-house X-ray diffractometer gave diffraction spots about 3.0 Å resolutions. We plan to perform the same experiment at SPring-8.


1998 ◽  
Vol 547 ◽  
Author(s):  
R.I. Walton ◽  
T. Loiseau ◽  
R.J. Francis ◽  
D. O'Hare ◽  
G. Férey

AbstractThe hydrothermal crystallisation (130-180 °C) of three-dimensional open-framework gallium and aluminium oxyfluoro-phosphates with the ULM-3 and ULM-4 structures have been studied in situ for the first time. The in situ energy-dispersive X-ray diffraction method has allowed the formation of the crystalline products to be observed under hydrothermal conditions The integrated areas of the strongest Bragg reflections has allowed quantitative kinetic data to be extracted. The effect of temperature, phosphorus source, templating agent have been investigated. The nature of phosphorus source in the reaction mixture has been found to affect dramatically the course of reaction for certain combinations of amine and temperature. Previously unobserved transient crystalline phases have been seen during the production of ULM-3 gallium phosphates when P2O5 or polyphosphoric acid are used. The formation of these intermediates affects the kinetics of product growth. In the case of the aluminium ULM-3 materials reaction always proceeds via a crystalline intermediate whatever phosphorus source is used. The ULM-4 framework materials are found to always crystallise directly with no evidence for any intermediates. Kinetic data for each system have been modelled using standard solid-state chemistry expressions, and these calculations indicate the reactions to be diffusion controlled.


Sign in / Sign up

Export Citation Format

Share Document