scholarly journals Crystallographic study of the energetic salt 1,2,4-triazolium perchlorate

Author(s):  
Mieko Kumasaki ◽  
Saori Gontani ◽  
Kanae Mori ◽  
Shinya Matsumoto ◽  
Kazuki Inoue

The molecular and crystal structure of 1H-1,2,4-triazolium perchlorate, C2H4N3 +·ClO4 −, was determined as detailed crystallographic data had not been available previously. The structure has monoclinic (P21/m) symmetry. It is of interest in the field of energetic compounds because nitrogen-rich azoles are the backbone of high-density energetic compounds, and salt-based energetic materials can exhibit preferential energy-release behaviour. The bond angles of the 1,2,4-triazolium cation in this study were similar to those of a cationic triazole ring reported previously and were different from those of the neutral triazole ring. This study contributes to the available data that can be used to analyse the relationship between the structures and properties of energetic materials.

2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2020 ◽  
Vol 75 (5) ◽  
pp. 497-501 ◽  
Author(s):  
Jacob E. Walley ◽  
Diane A. Dickie ◽  
Robert J. Gilliard

AbstractInterest in beryllium, the lightest member of group 2 elements, has grown substantially within the synthetic community. Herein, we report the synthesis and crystal structure of a heteroleptic haloberyllium borohydride bis(1-isopropyl-3-methyl-benzimidazol-2-ylidene)methane ‘carbodicarbene’ (CDC) complex [(CDC)BeCl(BH4)]. Crystallographic data: Triclinic space group P1̅, a = 8.8695(14), b = 12.394(2), c = 16.844(3) Å, α = 102.395(4), β = 96.456(4), γ = 99.164(4)°, wR2 (all data) = 0.2706 for 6720 unique data and 357 refined parameters.


2012 ◽  
Vol 9 (2) ◽  
pp. 87
Author(s):  
Mohd Abdul Fatah Abdul Manan ◽  
M. Ibrahim M. Tahir ◽  
Karen A. Crouse ◽  
Fiona N.-F. How ◽  
David J. Watkin

The crystal structure of the title compound has been determined. The compound crystallized in the triclinic space group P -1, Z = 2, V = 1839 .42( 18) A3 and unit cell parameters a= 11. 0460( 6) A, b = 13 .3180(7) A, c=13. 7321 (8) A, a = 80.659(3 )0, b = 69 .800(3 )0 and g = 77 .007 (2)0 with one disordered dimethylsulfoxide solvent molecule with the sulfur and oxygen atoms are distributed over two sites; S101/S102 [site occupancy factors: 0.6035/0.3965] and 0130/0131 [site occupancy factor 0.3965/0.6035]. The C22-S2 l and C 19-S20 bond distances of 1. 779(7) A and 1. 788(8) A indicate that both of the molecules are connected by the disulfide bond [S20-S21 2.055(2) A] in its thiol form. The crystal structure reveals that both of the 5-bromoisatin moieties are trans with respect to the [S21-S20 and CI 9-Nl 8] and [S20-S21 and C22-N23] bonds whereas the benzyl group from the dithiocarbazate are in the cis configuration with respect to [S21-S20 and C19-S44] and [S20-S21 and C22-S36] bonds. The crystal structure is further stabilized by intermolecular hydrogen bonds of N9-H35···O16 formed between the two molecules and N28-H281 ···O130, N28-H281 ···O131 and C4 l-H4 l l ···O 131 with the solvent molecule.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3464
Author(s):  
Xuan Zou ◽  
Jingyuan Zhou ◽  
Xianwen Ran ◽  
Yiting Wu ◽  
Ping Liu ◽  
...  

Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding–sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively. The ignition height of the reactive material was obtained by fitting the relationship between the flame duration and the drop height. It was found that the ignition height of PTFE/Al/Si/CuO containing 20% PTFE/Si is 48.27 cm, which is the lowest compared to the ignition height of other Si/PTFE ratios of PTFE/Al/Si/CuO; the flame temperature was calculated from the flame spectrum. It was found that flame temperature changes little for the same reactive material at different drop heights. Compared with the flame temperature of PTFE/Al/Si/CuO with four mass ratios, it was found that the flame temperature of PTFE/Al/Si/CuO with 20% PTFE/Si is the highest, which is 2589 K. The results show that PTFE/Al/Si/CuO containing 20% PTFE/Si is easier to be ignited and has a stronger temperature destruction effect.


2021 ◽  
Vol 411 ◽  
pp. 128603
Author(s):  
Xu Zhao ◽  
Zijian Li ◽  
Jianhu Zhang ◽  
Feiyan Gong ◽  
Bin Huang ◽  
...  

Author(s):  
Flavien A. A. Toze ◽  
Vladimir P. Zaytsev ◽  
Lala V. Chervyakova ◽  
Elisaveta A. Kvyatkovskaya ◽  
Pavel V. Dorovatovskii ◽  
...  

The chiral title compounds, C21H18N2O2, (I), and C21H18N2OS, (II) – products of the three-component reaction between benzylamine, isatoic anhydride and furyl- or thienyl-acrolein – are isostructural and form isomorphous racemic crystals. The tetrahydropyrimidine ring in (I) and (II) adopts a sofa conformation. The amino N atom has a trigonal–pyramidal geometry [sum of the bond angles is 347.0° for both (I) and (II)], whereas the amido N atom is flat [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienylethenyl substituents in (I) and (II) are planar and the conformation about the bridging C=C bond isE. These bulky fragments occupy the axial position at the quaternary C atom of the tetrahydropyrimidine ring, apparently, due to steric reasons. In the crystals, molecules of (I) and (II) form hydrogen-bonded helicoidal chains propagating along [010] by strong intermolecular N—H...O hydrogen bonds.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 533-543
Author(s):  
Johanna L Whitacre ◽  
Dana A Davis ◽  
Kurt A Toenjes ◽  
Sharon M Brower ◽  
Alison E M Adams

Abstract A large collection of yeast actin mutations has been previously isolated and used in numerous studies of actin cytoskeletal function. However, the various mutations have been in congenic, rather than isogenic, backgrounds, making it difficult to compare the subtle phenotypes that are characteristic of these mutants. We have therefore placed 27 mutations in an isogenic background. We used a subset of these mutants to compare the degree to which different actin alleles are defective in sporulation, endocytosis, and growth on NaCl-containing media. We found that the three phenotypes are highly correlated. The correlations are specific and not merely a reflection of general growth defects, because the phenotypes are not correlated with growth rates under normal conditions. Significantly, those actin mutants exhibiting the most severe phenotypes in all three processes have altered residues that cluster to a small region of the actin crystal structure previously defined as the fimbrin (Sac6p)-binding site. We examined the relationship between endocytosis and growth on salt and found that shifting wild-type or actin mutant cells to high salt reduces the rate of α-factor internalization. These results suggest that actin mutants may be unable to grow on salt because of additive endocytic defects (due to mutation and salt).


2018 ◽  
Vol 6 (38) ◽  
pp. 18669-18676 ◽  
Author(s):  
Igor L. Dalinger ◽  
Olga V. Serushkina ◽  
Nikita V. Muravyev ◽  
Dmitry B. Meerov ◽  
Evgeniy A. Miroshnichenko ◽  
...  

The azasydnone unit is a promising explosophoric block for future generations of highly thermostable and dense energetic materials.


Sign in / Sign up

Export Citation Format

Share Document