scholarly journals The structure of Tim50(164–361) suggests the mechanism by which Tim50 receives mitochondrial presequences

2015 ◽  
Vol 71 (9) ◽  
pp. 1146-1151 ◽  
Author(s):  
Jingzhi Li ◽  
Bingdong Sha

Mitochondrial preproteins are transported through the translocase of the outer membrane (TOM) complex. Tim50 and Tim23 then transfer preproteins with N-terminal targeting presequences through the intermembrane space (IMS) across the inner membrane. The crystal structure of the IMS domain of Tim50 [Tim50(164–361)] has previously been determined to 1.83 Å resolution. Here, the crystal structure of Tim50(164–361) at 2.67 Å resolution that was crystallized using a different condition is reported. Compared with the previously determined Tim50(164–361) structure, significant conformational changes occur within the protruding β-hairpin of Tim50 and the nearby helix A2. These findings indicate that the IMS domain of Tim50 exhibits significant structural plasticity within the putative presequence-binding groove, which may play important roles in the function of Tim50 as a receptor protein in the TIM complex that interacts with the presequence and multiple other proteins. More interestingly, the crystal packing indicates that helix A1 from the neighboring monomer docks into the putative presequence-binding groove of Tim50(164–361), which may mimic the scenario of Tim50 and the presequence complex. Tim50 may recognize and bind the presequence helix by utilizing the inner side of the protruding β-hairpin through hydrophobic interactions. Therefore, the protruding β-hairpin of Tim50 may play critical roles in receiving the presequence and recruiting Tim23 for subsequent protein translocations.

Glycobiology ◽  
2021 ◽  
Author(s):  
Margrethe Gaardløs ◽  
Sergey A Samsonov ◽  
Marit Sletmoen ◽  
Maya Hjørnevik ◽  
Gerd Inger Sætrom ◽  
...  

Abstract Mannuronan C-5 epimerases catalyse the epimerization of monomer residues in the polysaccharide alginate, changing the physical properties of the biopolymer. The enzymes are utilized to tailor alginate to numerous biological functions by alginate-producing organisms. The underlying molecular mechanisms that control the processive movement of the epimerase along the substrate chain is still elusive. To study this, we have used an interdisciplinary approach combining molecular dynamics simulations with experimental methods from mutant studies of AlgE4, where initial epimerase activity and product formation were addressed with NMR spectroscopy, and characteristics of enzyme-substrate interactions were obtained with isothermal titration calorimetry and optical tweezers. Positive charges lining the substrate-binding groove of AlgE4 appear to control the initial binding of poly-mannuronate, and binding also seems to be mediated by both electrostatic and hydrophobic interactions. After the catalytic reaction, negatively charged enzyme residues might facilitate dissociation of alginate from the positive residues, working like electrostatic switches, allowing the substrate to translocate in the binding groove. Molecular simulations show translocation increments of two monosaccharide units before the next productive binding event resulting in MG-block formation, with the epimerase moving with its N-terminus towards the reducing end of the alginate chain. Our results indicate that the charge pair R343-D345 might be directly involved in conformational changes of a loop that can be important for binding and dissociation. The computational and experimental approaches used in this study complement each other, allowing for a better understanding of individual residues’ roles in binding and movement along the alginate chains.


2016 ◽  
Vol 72 (2) ◽  
pp. 236-244 ◽  
Author(s):  
Zhen Chen ◽  
Li-Hong Zhan ◽  
Hai-Feng Hou ◽  
Zeng-Qiang Gao ◽  
Jian-Hua Xu ◽  
...  

InEscherichia coli, the Omp85 protein BamA and four lipoproteins (BamBCDE) constitute the BAM complex, which is essential for the assembly and insertion of outer membrane proteins into the outer membrane. Here, the crystal structure of BamB in complex with the POTRA3–4 domains of BamA is reported at 2.1 Å resolution. Based on this structure, the POTRA3 domain is associated with BamBviahydrogen-bonding and hydrophobic interactions. Structural and biochemical analysis revealed that the conserved residues Arg77, Glu127, Glu150, Ser167, Leu192, Leu194 and Arg195 of BamB play an essential role in interaction with the POTRA3 domain.


1996 ◽  
Vol 16 (8) ◽  
pp. 4035-4042 ◽  
Author(s):  
D A Court ◽  
F E Nargang ◽  
H Steiner ◽  
R S Hodges ◽  
W Neupert ◽  
...  

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Toshiya Endo ◽  
Koji Yamano

Abstract Mitochondria are two-membrane bounded organelles consisting of 1000–2000 different proteins, most of which are synthesized in the cytosol and subsequently imported into mitochondria. The imported proteins are further sorted to one of the four compartments, the outer membrane, intermembrane space, inner membrane, and matrix, mostly following one of the five major pathways. Mitochondrial protein import and sorting are mediated by the translocator complexes in the membranes and chaperones in the aqueous compartments operating along the import pathways. Here, we summarize the expanding knowledge on the roles of translocators, chaperones, and related components in the multiple pathways for mitochondrial protein trafficking.


2018 ◽  
Author(s):  
Gareth W. Hughes ◽  
Stephen C. L. Hall ◽  
Claire S. Laxton ◽  
Pooja Sridhar ◽  
Amirul H. Mahadi ◽  
...  

AbstractThe Mla pathway is believed to be involved in maintaining the asymmetrical Gram-negative outer membrane via retrograde phospholipid transport. The pathway is composed of 3 components: the outer membrane MlaA-OmpC/F complex, a soluble periplasmic protein, MlaC, and the inner membrane ATPase, MlaFEDB complex. Here we solve the crystal structure of MlaC in its phospholipid free closed apo conformation, revealing a novel pivoting β-sheet mechanism which functions to open and close the phospholipid-binding pocket. Using the apo form of MlaC we provide evidence that the Mla pathway functions in an anterograde rather than a retrograde direction by showing the inner membrane MlaFEDB machinery exports phospholipids and transfers them to MlaC in the periplasm. We confirm that the lipid export process occurs through the MlaD component of the MlaFEDB complex. This lipid export process is shown to be independent of ATP. Our data provides, for the first time, evidence of an apparatus for lipid export to the outer membrane.


2019 ◽  
Author(s):  
Sara Alvira ◽  
Daniel W. Watkins ◽  
Lucy Troman ◽  
William J. Allen ◽  
James Lorriman ◽  
...  

SUMMARYThe outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent – hydrophobic β-barrel Outer-Membrane Proteins (OMPs) – are secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones e.g. SurA, which prevent aggregation. OMPs are then offloaded to the β-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL: an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane ‘insertase’ YidC) contacts SurA and BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Our results show the trans-membrane proton-motive-force (PMF) acts at distinct stages of protein secretion: for SecA-driven translocation across the inner-membrane through SecYEG; and to communicate conformational changes via SecDF to the BAM machinery. The latter presumably ensures efficient passage of OMPs. These interactions provide insights of inter-membrane organisation, the importance of which is becoming increasingly apparent.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1166-C1166
Author(s):  
Jason Brouwer ◽  
Adeline Robin ◽  
Geoff Thompson ◽  
Ahmad Wardak ◽  
Ruth Kluck ◽  
...  

Apoptotic stimuli activate and oligomerise the pro-apoptotic proteins Bak and Bax resulting in mitochondrial outer membrane permeabilisation and subsequent cell death. This activation can occur when certain BH3-only proteins directly interact with Bak and Bax. A recent crystal structure by Czabotar et al. (2013) revealed a novel conformational change for Bax upon activation by BH3-only peptides. Distinguishing characteristics of BH3-only proteins capable of directly activating Bax were also elucidated. Here we describe complementary studies on the related protein Bak. We identify specific BH3-only peptides capable of inducing Bak dimerisation and describe crystal structures that provide key insights into Bak activation and oligomerisation. These structures demonstrate that Bak undergoes similar conformational changes upon activation to those observed with Bax. Altogether our results confirm an analogous mechanism for activation and dimerization of Bak and Bax in response to BH3-only peptides.


1986 ◽  
Vol 233 (1) ◽  
pp. 283-286 ◽  
Author(s):  
M C Duque-Magalhães ◽  
P Régnier

Rat liver mitochondrial fractions corresponding to four morphological structures (matrix, inner membrane, intermembrane space and outer membrane) contain proteinases that cleave casein components at different rates. Proteinases of the intermembrane space preferentially cleave kappa-casein, whereas the proteinases of the outer membrane, inner membrane and matrix fractions degrade alpha S1-casein more rapidly. Electrophoretic separation of the degradation products of alpha S1-casein and kappa-casein in polyacrylamide gels shows that different polypeptides are produced when the substrate is degraded by the matrix, by both membranes and by the intermembrane-space fraction. Some of the degradation products resulting from incubation of the caseins with the mitochondrial fractions are probably the result of digestion by contaminating lysosomal proteinase(s). The matrix has a high peptidase activity, since glucagon, a small peptide, is very rapidly degraded by this fraction. These observations strongly suggest that distinct proteinases, with different specificities, are associated respectively with the intermembrane space and with both membrane fractions.


Sign in / Sign up

Export Citation Format

Share Document