scholarly journals High-flux ptychographic imaging using the new 55 µm-pixel detector `Lambda' based on the Medipix3 readout chip

2014 ◽  
Vol 70 (6) ◽  
pp. 552-562 ◽  
Author(s):  
R. N. Wilke ◽  
J. Wallentin ◽  
M. Osterhoff ◽  
D. Pennicard ◽  
A. Zozulya ◽  
...  

Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector `Lambda' has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 105 photons nm−2 s−1or a flux of ∼1010 photons s−1on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

Instruments ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 38 ◽  
Author(s):  
Majid Zarghami ◽  
Leonardo Gasparini ◽  
Matteo Perenzoni ◽  
Lucio Pancheri

This paper investigates the use of image sensors based on complementary metal–oxide–semiconductor (CMOS) single-photon avalanche diodes (SPADs) in high dynamic range (HDR) imaging by combining photon counts and timestamps. The proposed method is validated experimentally with an SPAD detector based on a per-pixel time-to-digital converter (TDC) architecture. The detector, featuring 32 × 32 pixels with 44.64-µm pitch, 19.48% fill factor, and time-resolving capability of ~295-ps, was fabricated in a 150-nm CMOS standard technology. At high photon flux densities, the pixel output is saturated when operating in photon-counting mode, thus limiting the DR of this imager. This limitation can be overcome by exploiting the distribution of photon arrival times in each pixel, which shows an exponential behavior with a decay rate dependent on the photon flux level. By fitting the histogram curve with the exponential decay function, the extracted time constant is used to estimate the photon count. This approach achieves 138.7-dB dynamic range within 30-ms of integration time, and can be further extended by using a timestamping mechanism with a higher resolution.


2020 ◽  
Vol 27 (3) ◽  
pp. 708-712
Author(s):  
Stanislav Stoupin ◽  
Sergey Antipov ◽  
Alexander M. Zaitsev

Enhancement of X-ray excited optical luminescence in a 100 µm-thick diamond plate by introduction of defect states via electron beam irradiation and subsequent high-temperature annealing is demonstrated. The resulting X-ray transmission-mode scintillator features a linear response to incident photon flux in the range 7.6 × 108 to 1.26 × 1012 photons s−1 mm−2 for hard X-rays (15.9 keV) using exposure times from 0.01 to 5 s. These characteristics enable a real-time transmission-mode imaging of X-ray photon flux density without disruption of X-ray instrument operation.


2008 ◽  
Vol 41 (4) ◽  
pp. 669-674 ◽  
Author(s):  
Thomas Weber ◽  
Sofia Deloudi ◽  
Miroslav Kobas ◽  
Yoshihiko Yokoyama ◽  
Akihisa Inoue ◽  
...  

How many of the theoretically densely distributed Bragg reflections of a quasicrystal can be observed employing an area detector and synchrotron radiation? How does the reflection density of a real quasicrystal change as a function of exposure time, and what is the minimum distance between reflections? What does the distribution of diffuse scattering look like? To answer these questions, the Bragg reflection density of a perfect icosahedral quasicrystal with composition Al64Cu23Fe13was measured employing a novel type of single-photon-counting X-ray pixel detector, PILATUS 6M, which allows noise-free data collection with the extraordinarily large dynamic range of 20 bit. The reflection density was found to be two orders of magnitude lower than expected for a strictly quasiperiodic structure. Moreover, diffuse scattering reflects significant structural disorder, breaking six-dimensionalF-lattice symmetry. These findings have some implications for the interpretation of physical properties.


2021 ◽  
Vol 28 (2) ◽  
pp. 439-447
Author(s):  
Yasukazu Nakaye ◽  
Takuto Sakumura ◽  
Yasutaka Sakuma ◽  
Satoshi Mikusu ◽  
Arkadiusz Dawiec ◽  
...  

Hybrid photon counting (HPC) detectors are widely used at both synchrotron facilities and in-house laboratories. The features of HPC detectors, such as no readout noise, high dynamic range, high frame rate, excellent point spread function, no blurring etc. along with fast data acquisition, provide a high-performance detector with a low detection limit and high sensitivity. Several HPC detector systems have been developed around the world. A number of them are commercially available and used in academia and industry. One of the important features of an HPC detector is a fast readout speed. Most HPC detectors can easily achieve over 1000 frames s−1, one or two orders of magnitude faster than conventional CCD detectors. Nevertheless, advanced scientific challenges require ever faster detectors in order to study dynamical phenomena in matter. The XSPA-500k detector can achieve 56 kframes s−1 continuously, without dead-time between frames. Using `burst mode', a special mode of the UFXC32k ASIC, the frame rate reaches 1 000 000 frames s−1. XSPA-500k was fully evaluated at the Metrology beamline at Synchrotron SOLEIL (France) and its readout speed was confirmed by tracking the synchrotron bunch time structure. The uniformity of response, modulation transfer function, linearity, energy resolution and other performance metrics were also verified either with fluorescence X-rays illuminating the full area of the detector or with the direct beam.


2020 ◽  
Vol 27 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Tim Brandt van Driel ◽  
Silke Nelson ◽  
Rebecca Armenta ◽  
Gabriel Blaj ◽  
Stephen Boo ◽  
...  

The ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.16 megapixel detector, with a 16.5 cm × 16.5 cm active area and ∼80% coverage. The high dynamic range is achieved with three distinct gain settings (low, medium, high) as well as two auto-ranging modes (high-to-low and medium-to-low). Here the three fixed gain modes are evaluated. The resulting dynamic range (from single photon counting to 10000 photons pixel−1 pulse−1 at 8 keV) makes it suitable for a large number of different XFEL experiments. The ePix10k replaces the large CSPAD in operation since 2011. The dimensions of the two detectors are similar, making the upgrade from CSPAD to ePix10k straightforward for most setups, with the ePix10k improving on experimental performance. The SLAC-developed ePix cameras all utilize a similar platform, are tailored to target different experimental conditions and are designed to provide an upgrade path for future high-repetition-rate XFELs. Here the first measurements on this new ePix10k detector are presented and the performance under typical XFEL conditions evaluated during an LCLS X-ray diffuse scattering experiment measuring the 9.5 keV X-ray photons scattered from a thin liquid jet.


2014 ◽  
Vol 996 ◽  
pp. 203-208 ◽  
Author(s):  
Dubravka Sisak Jung ◽  
Lasse Suominen ◽  
Jari Parantainen ◽  
Christoph Hoermann

MYTHEN is a single-photon-counting strip detector. Its main features are high spatial resolution, zero noise, fluorescence suppression, fast readout, high dynamic range, radiation-hard and maintenance-free design. Perspectives of such a detector in residual stress measurements involve: (i) Measurements of absorbing/thick materials (ii) Well resolved peaks (iii) excellent signal-to-noise ratio (iv) Analysis of alloys (v) Fast data collection (vi) Accurate low content retained austenite measurements (vii) in situ measurements and mapping (viii) infinite life cycle. Technical details and application in synchrotron and laboratory diffractometers will be presented.


2011 ◽  
Vol 18 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Anna Bergamaschi ◽  
Roberto Dinapoli ◽  
Dominic Greiffenberg ◽  
Beat Henrich ◽  
Ian Johnson ◽  
...  

The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method,i.e.measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.


Sign in / Sign up

Export Citation Format

Share Document