scholarly journals The many faces of SRP RNA

2014 ◽  
Vol 70 (a1) ◽  
pp. C1814-C1814
Author(s):  
Klemens Wild ◽  
Georg Kempf ◽  
Jan Grotwinkel ◽  
Irmgard Sinning

The signal recognition particle (SRP) is a ribonucleoprotein complex that plays an essential role in co-translational targeting of membrane proteins. It is found in all three domains of life and exhibits a high diversity regarding composition and structure. In most organisms, SRP can be divided into two functional domains. The S domain mediates recognition and transport of ribosome-nascent chain complexes to the translocation channel, while the Alu domain stalls elongation of the ribosome until the complex has been faithfully delivered._x000B_Here we present the crystal structures of the complete bacterial SRP Alu domain and the ternary complex of human SRP S domain RNA, SRP19, and the SRP68-RBD. Together with previous structures, our data underline the taxon-specific evolutionary adaptation of SRP RNA that has important implications in SRP-mediated targeting.

2019 ◽  
Vol 401 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Klemens Wild ◽  
Matthias M.M. Becker ◽  
Georg Kempf ◽  
Irmgard Sinning

Abstract Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
André Plagens ◽  
Michael Daume ◽  
Julia Wiegel ◽  
Lennart Randau

Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules.


2015 ◽  
Vol 112 (13) ◽  
pp. 3943-3948 ◽  
Author(s):  
Ottilie von Loeffelholz ◽  
Qiyang Jiang ◽  
Aileen Ariosa ◽  
Manikandan Karuppasamy ◽  
Karine Huard ◽  
...  

The signal recognition particle (SRP)-dependent pathway is essential for correct targeting of proteins to the membrane and subsequent insertion in the membrane or secretion. In Escherichia coli, the SRP and its receptor FtsY bind to ribosome–nascent chain complexes with signal sequences and undergo a series of distinct conformational changes, which ensures accurate timing and fidelity of protein targeting. Initial recruitment of the SRP receptor FtsY to the SRP–RNC complex results in GTP-independent binding of the SRP–FtsY GTPases at the SRP RNA tetraloop. In the presence of GTP, a closed state is adopted by the SRP–FtsY complex. The cryo-EM structure of the closed state reveals an ordered SRP RNA and SRP M domain with a signal sequence-bound. Van der Waals interactions between the finger loop and ribosomal protein L24 lead to a constricted signal sequence-binding pocket possibly preventing premature release of the signal sequence. Conserved M-domain residues contact ribosomal RNA helices 24 and 59. The SRP–FtsY GTPases are detached from the RNA tetraloop and flexible, thus liberating the ribosomal exit site for binding of the translocation machinery.


2012 ◽  
Vol 23 (16) ◽  
pp. 3027-3040 ◽  
Author(s):  
Ying Zhang ◽  
Uta Berndt ◽  
Hanna Gölz ◽  
Arlette Tais ◽  
Stefan Oellerer ◽  
...  

Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.


2019 ◽  
Vol 6 (11) ◽  
pp. 190773 ◽  
Author(s):  
Manuel Sanguinetti ◽  
Andrés Iriarte ◽  
Sotiris Amillis ◽  
Mónica Marín ◽  
Héctor Musto ◽  
...  

In both prokaryotic and eukaryotic genomes, synonymous codons are unevenly used. Such differential usage of optimal or non-optimal codons has been suggested to play a role in the control of translation initiation and elongation, as well as at the level of transcription and mRNA stability. In the case of membrane proteins, codon usage has been proposed to assist in the establishment of a pause necessary for the correct targeting of the nascent chains to the translocon. By using as a model UreA, the Aspergillus nidulans urea transporter, we revealed that a pair of non-optimal codons encoding amino acids situated at the boundary between the N -terminus and the first transmembrane segment are necessary for proper biogenesis of the protein at 37°C. These codons presumably regulate the translation rate in a previously undescribed fashion, possibly contributing to the correct interaction of ureA -translating ribosome-nascent chain complexes with the signal recognition particle and/or other factors, while the polypeptide has not yet emerged from the ribosomal tunnel. Our results suggest that the presence of the pair of non-optimal codons would not be functionally important in all cellular conditions. Whether this mechanism would affect other proteins remains to be determined.


2016 ◽  
Vol 199 (5) ◽  
Author(s):  
Tomoya Maeda ◽  
Yuya Tanaka ◽  
Masaaki Wachi ◽  
Masayuki Inui

ABSTRACT Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum, SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3′-to-5′ exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3′ maturation of 4.5S RNA in C. glutamicum. The mature form of 4.5S RNA was inefficiently formed in ΔrneG Δpnp mutant cells, suggesting the existence of an alternative pathway for the 3′ maturation of 4.5S RNA. Primer extension analysis also revealed that the 5′ mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δpnp, ΔrneG, and ΔybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum, which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3′ maturation of the SRP RNA (4.5S RNA) in this bacterium. This indicates that 3′ end processing in this organism is different from that in other bacteria, such as Escherichia coli.


2006 ◽  
Vol 17 (9) ◽  
pp. 3860-3869 ◽  
Author(s):  
Julia Schaletzky ◽  
Tom A. Rapoport

We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC–SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC–SRP complexes can overcome the competition by nontranslating ribosomes.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Rebecca M Voorhees ◽  
Ramanujan S Hegde

The universally conserved signal recognition particle (SRP) is essential for the biogenesis of most integral membrane proteins. SRP scans the nascent chains of translating ribosomes, preferentially engaging those with hydrophobic targeting signals, and delivers these ribosome-nascent chain complexes to the membrane. Here, we present structures of native mammalian SRP-ribosome complexes in the scanning and engaged states. These structures reveal the near-identical SRP architecture of these two states, show many of the SRP-ribosome interactions at atomic resolution, and suggest how the polypeptide-binding M domain selectively engages hydrophobic signals. The scanning M domain, pre-positioned at the ribosomal exit tunnel, is auto-inhibited by a C-terminal amphipathic helix occluding its hydrophobic binding groove. Upon engagement, the hydrophobic targeting signal displaces this amphipathic helix, which then acts as a protective lid over the signal. Biochemical experiments suggest how scanning and engagement are coordinated with translation elongation to minimize exposure of hydrophobic signals during membrane targeting.


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


Sign in / Sign up

Export Citation Format

Share Document