scholarly journals Electron Microscopy for Atomic/Electronic Structure of Quasicrystals

2014 ◽  
Vol 70 (a1) ◽  
pp. C1193-C1193
Author(s):  
Eiji Abe

As stated with special emphasis in the Noble Lecture by Dr. Shechtman, the quasicrystal discovery is definitely the victory of electron microscopy – the first icosahedral stereogram was constructed by a series of electron diffraction patterns from a tiny quasicrystalline grain, and the following high-resolution electron microscope images indeed confirmed a unique aperiodic order that can never be consistent with twinning of normal crystals. Almost thirty years after these early electron microscopy studies, we are now in the era of aberration-corrected electron microscopy which realizes a remarkable resolution beyond an Ångstrom scale [1, 2]. In the talk, I will describe the local atomic/electronic structure of quasicrystals using state-of-the-art scanning transmission electron microscopy, providing several striking insights that may lead to the answers for the longstanding key questions; "Where are the atoms? And why do quasicrystals form?"

2006 ◽  
Vol 17 (2) ◽  
pp. 227
Author(s):  
A. F. Moodie ◽  
J. C. H. Spence

John Cowley contributed significantly to all of the fields that relate to electron diffraction and electron microscopy, and helped to found not a few of them. His name is associated in particular with n-beam dynamical theory, high-resolution electron microscopy, scanning transmission electron microscopy, instrumental design, and the application of the techniques of electron scattering to structure analysis. His experimental work was not, however, confined to the scattering of electrons: to take but one instance, his seminal work on the theory of short-range order was stimulated initially by his experiments using X-rays, and it was only later that he extended the technique to include electron diffraction. Finally, to all those who practise the techniques of scattering electrons, X-rays, or neutrons in the study of solids, liquids or gases, his book Diffraction Physics remains not only eminently readable but authoritative.


2007 ◽  
Vol 22 (6) ◽  
pp. 1486-1490 ◽  
Author(s):  
Wei Lu ◽  
ChunLin Chen ◽  
LianLong He ◽  
YanJun Xi ◽  
FuHui Wang

Two TiO2layers formed in TiAl oxidation for 50 h at 900 °C were studied using scanning transmission electron microscopy. The main efforts were placed on the investigation of the distribution of niobium. It was found that Nb enriched in TiO2grains of mixture layer but did not exist in the outer TiO2layer. High-resolution electron microscopy (HREM) Z-contrast image revealed that Nb substitute for Ti site leading to Nb enrichment in TiO2grains of the mixture layer. The formation mechanism of the two TiO2layers and the potential effect of Nb doping in the mixture layer were also discussed.


2021 ◽  
Vol 27 (5) ◽  
pp. 1102-1112
Author(s):  
Jiwon Jeong ◽  
Niels Cautaerts ◽  
Gerhard Dehm ◽  
Christian H. Liebscher

The recent development of electron-sensitive and pixelated detectors has attracted the use of four-dimensional scanning transmission electron microscopy (4D-STEM). Here, we present a precession electron diffraction-assisted 4D-STEM technique for automated orientation mapping using diffraction spot patterns directly captured by an in-column scintillator-based complementary metal-oxide-semiconductor (CMOS) detector. We compare the results to a conventional approach, which utilizes a fluorescent screen filmed by an external charge charge-coupled device camera. The high-dynamic range and signal-to-noise characteristics of the detector greatly improve the image quality of the diffraction patterns, especially the visibility of diffraction spots at high scattering angles. In the orientation maps reconstructed via the template matching process, the CMOS data yield a significant reduction of false indexing and higher reliability compared to the conventional approach. The angular resolution of misorientation measurement could also be improved by masking reflections close to the direct beam. This is because the orientation sensitive, weak, and small diffraction spots at high scattering angles are more significant. The results show that fine details, such as nanograins, nanotwins, and sub-grain boundaries, can be resolved with a sub-degree angular resolution which is comparable to orientation mapping using Kikuchi diffraction patterns.


2016 ◽  
Vol 61 (3) ◽  
pp. 1575-1580
Author(s):  
B. Leszczyńska-Madej ◽  
M. W. Richert ◽  
I. Nejman ◽  
P. Zawadzka

AbstractThe present study attempts to apply HE to 99.99% pure copper. The microstructure of the samples was investigated by both light microscopy and scanning transmission electron microscopy (STEM). Additionally, the microhardness was measured, the tensile test was made, and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns, misorientation was determined. The obtained results show that microstructure of copper deformed by hydrostatic extrusion (HE) is rather inhomogeneous. The regions strongly deformed with high dislocation density exist near cells and grains/subgrains free of dislocations. The measurements of the grain size have revealed that the sample with an initial in annealed-state grain size of about 250 μm had this grain size reduced to below 0.35μm when it was deformed by HE to the strain ε=2.91. The microhardness and UTS are stable within the whole investigated range of deformation.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
J. M. Cowley

The comparison of scanning transmission electron microscopy (STEM) with conventional transmission electron microscopy (CTEM) can best be made by means of the Reciprocity Theorem of wave optics. In Fig. 1 the intensity measured at a point A’ in the CTEM image due to emission from a point B’ in the electron source is equated to the intensity at a point of the detector, B, due to emission from a point A In the source In the STEM. On this basis it can be demonstrated that contrast effects In the two types of instrument will be similar. The reciprocity relationship can be carried further to include the Instrument design and experimental procedures required to obtain particular types of information. For any. mode of operation providing particular information with one type of microscope, the analagous type of operation giving the same information can be postulated for the other type of microscope. Then the choice between the two types of instrument depends on the practical convenience for obtaining the required Information.


Author(s):  
F. Khoury ◽  
L. H. Bolz

The lateral growth habits and non-planar conformations of polyethylene crystals grown from dilute solutions (<0.1% wt./vol.) are known to vary depending on the crystallization temperature.1-3 With the notable exception of a study by Keith2, most previous studies have been limited to crystals grown at <95°C. The trend in the change of the lateral growth habit of the crystals with increasing crystallization temperature (other factors remaining equal, i.e. polymer mol. wt. and concentration, solvent) is illustrated in Fig.l. The lateral growth faces in the lozenge shaped type of crystal (Fig.la) which is formed at lower temperatures are {110}. Crystals formed at higher temperatures exhibit 'truncated' profiles (Figs. lb,c) and are bound laterally by (110) and (200} growth faces. In addition, the shape of the latter crystals is all the more truncated (Fig.lc), and hence all the more elongated parallel to the b-axis, the higher the crystallization temperature.


Sign in / Sign up

Export Citation Format

Share Document