scholarly journals Water Oxidation in Natural Photosynthesis

2014 ◽  
Vol 70 (a1) ◽  
pp. C723-C723
Author(s):  
Jan Kern ◽  
Rosalie Tran ◽  
Ruchira Chatterjee ◽  
Guangye Han ◽  
Roberto Alonso-Mori ◽  
...  

The photosynthetic water oxidation reaction is energetically demanding and mechanistically complex because of the difficulties in managing the four electron, four proton redox chemistry required for the evolution of molecular oxygen starting from two water molecules. The reaction takes place in Photosystem II (PS II), a multi-subunit membrane protein present in plants, algae, and cyanobacteria. This sunlight-driven reaction is catalyzed by an oxygen-evolving complex (OEC), that consists of an oxo-bridged four Mn and one Ca cluster. O2 is formed and released only after four oxidation equivalents are accumulated at the OEC. The structure of the Mn4CaO5 cluster has been studied by various spectroscopic and diffraction methods. The recent XRD study by Umena et al.[1] has shown the oxo-bridged Mn4Ca cluster structure at 1.9 Å resolution. Based on this high-resolution XRD structure, there have been efforts to obtain chemically optimized structures and structural changes of the Mn4CaO5 cluster during the catalytic cycle using spectroscopic parameters and theoretical approaches. EXAFS spectra of the PS II S states show that the structure of the Mn4CaO5 cluster changes during the catalytic cycle.[2] In particular, the short Mn-Mn distances change in the range of 2.7 to 2.9 Å. Such changes in oxygen-bridged Mn-Mn distances can reflect several chemical parameters; Mn oxidation state changes, protonation state changes of bridging oxygens, ligation modes (e.g. bidentate/monodentate), as well as fundamental changes in geometry. We have also used femtosecond X-ray spectroscopy and crystallography to study the catalytic process of the OEC.[3] The femtosecond X-ray pulses of the free-electron laser allows us to out-run X-ray damage at room temperature, and the time-evolution of the photo-induced reaction can be probed using a visible laser-pump followed by the X-ray-probe pulse. We will discuss a possible water oxidation mechanism based on these results.

2020 ◽  
Vol 117 (23) ◽  
pp. 12624-12635 ◽  
Author(s):  
Mohamed Ibrahim ◽  
Thomas Fransson ◽  
Ruchira Chatterjee ◽  
Mun Hon Cheah ◽  
Rana Hussein ◽  
...  

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2→ S3transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2→ S3transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QAand QB, are observed. At the donor site, tyrosine YZand His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a “water wheel”-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2→ S3transition mirrors the appearance of OXelectron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2042
Author(s):  
Joaquín Soriano-López ◽  
Rory Elliott ◽  
Amal C. Kathalikkattil ◽  
Ayuk M. Ako ◽  
Wolfgang Schmitt

The water oxidation half-reaction is considered the bottleneck in the development of technological advances to replace fossil fuels with sustainable and economically affordable energy sources. In natural photosynthesis, water oxidation occurs in the oxygen evolving complex (OEC), a manganese-oxo cluster {Mn4CaO5} with a cubane-like topology that is embedded within a redox-active protein environment located in photosystem II (PS II). Therefore, the preparation of biomimetic manganese-based compounds is appealing for the development of efficient and inexpensive water oxidation catalysts. Here, we present the water oxidation catalytic activity of a high-nuclearity mixed-metal manganese-strontium cluster, [MnIII12MnII6Sr(μ4-O8)(μ3-Cl)8(HLMe)12(MeCN)6]Cl2∙15MeOH (Mn18Sr) (HLMe = 2,6-bis(hydroxymethyl)-p-cresol), in neutral media. This biomimetic mixed-valence cluster features different cubane-like motifs and it is stabilized by redox-active, quinone-like organic ligands. The complex displays a low onset overpotential of 192 mV and overpotentials of 284 and 550 mV at current densities of 1 mA cm−2 and 10 mA cm−2, respectively. Direct O2 evolution measurements under visible light-driven water oxidation conditions demonstrate the catalytic capabilities of this cluster, which exhibits a turnover frequency of 0.48 s−1 and a turnover number of 21.6. This result allows for a direct comparison to be made with the structurally analogous Mn-oxo cluster [MnIII12MnII7(µ4-O)8(µ3-OCH3)2(µ3-Br)6(HLMe)12(MeOH)5(MeCN)]Br2·9MeCN·MeOH (Mn19), the water oxidation catalytic activity of which was recently reported by us. This work highlights the potential of this series of compounds towards the water oxidation reaction and their amenability to induce structural changes that modify their reactivity.


2015 ◽  
Vol 112 (13) ◽  
pp. 3979-3984 ◽  
Author(s):  
Xichen Li ◽  
Per E. M. Siegbahn ◽  
Ulf Ryde

Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O–O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2–S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.


Author(s):  
Sandra Turconi ◽  
Colin P. Horwitz ◽  
S. T. Weintraub ◽  
Joseph T. Warden ◽  
Jonathan H. A. Nugent ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C350-C350
Author(s):  
Yasufumi Umena ◽  
Keisuke Kawakami ◽  
Jian-Ren Shen ◽  
Nobuo Kamiya

Molecular oxygen on Earth is generated from photosynthesis by cyanobacteria, algae and plants, where water molecules are split by Photosystem II (PSII). PSII catalyzes light-induced water oxidation leading to the production of protons, electrons and molecular oxygen. The catalytic center of oxygen evolving complex (OEC) in PSII is composed of four Mn atoms and one Ca atom organized in a Mn4CaO5-cluster, which cycles through several different redox states to accomplish the catalytic process. Cyanobacterial PSII is a multi-subunits membrane protein complex composed of 17 membrane-spanning subunits, 3 membrane-extrinsic subunits and about 80 co-factor molecules with a total molecular weight of 350 kDa as a monomer. We reported the PSII structure at 1.9 Å resolution prepared from Thermosynechococcus vulcanus (PDB code: 3ARC)[1]. We determined unambiguously the positions of the atoms in OEC using the electron density map corresponding to each of five metal atoms and five oxygen atoms, for the first time. However, the valences of each of the four Mn atoms and their participation in the redox reactions in OEC are not fully understood. In order to uncover the catalytic mechanism of light-induced water oxidation by OEC, it is important to determine the valence of each Mn atom as well as to solve the detailed structure. In this study, we analyze the electronic state of each Mn atom in OEC by X-ray crystallographic analysis using Mn K-absorption edge wavelength. The Mn K-absorption edge depends on the oxidation number, and the anomalous scattering factor changes greatly for the Mn atoms in different oxidation states. We collected the anomalous difference data from PSII crystals using the wavelength (~1.8921 Å) on the Mn K-absorption edge at beamline BL38B1 and BL41XU of SPring-8 in Japan. The calculated anomalous difference Fourier map indicated different intensities among the four Mn atoms in OEC. This may suggest the different electronic state among the four Mn atoms in OEC. However, there is a possibility that these Mn atoms are reduced by X-ray exposures to some extent, and so the valences of these Mn atoms were not determined completely. We will discuss the relationship between peak heights of the anomalous difference Fourier map and the valence among the four Mn atoms in OEC.


Author(s):  
Chiara Pasquini ◽  
Si Liu ◽  
Petko Chernev ◽  
Diego Gonzalez-Flores ◽  
Mohammad Reza Mohammadi ◽  
...  

AbstractTransition metal oxides are promising electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), which is critical in electrochemical production of non-fossil fuels. The involvement of oxidation state changes of the metal in OER electrocatalysis is increasingly recognized in the literature. Tracing these oxidation states under operation conditions could provide relevant information for performance optimization and development of durable catalysts, but further methodical developments are needed. Here, we propose a strategy to use single-energy X-ray absorption spectroscopy for monitoring metal oxidation-state changes during OER operation with millisecond time resolution. The procedure to obtain time-resolved oxidation state values, using two calibration curves, is explained in detail. We demonstrate the significance of this approach as well as possible sources of data misinterpretation. We conclude that the combination of X-ray absorption spectroscopy with electrochemical techniques allows us to investigate the kinetics of redox transitions and to distinguish the catalytic current from the redox current. Tracking of the oxidation state changes of Co ions in electrodeposited oxide films during cyclic voltammetry in neutral pH electrolyte serves as a proof of principle. Graphical abstract


2007 ◽  
Vol 363 (1494) ◽  
pp. 1211-1219 ◽  
Author(s):  
Gary W Brudvig

Photosystem II (PSII) uses light energy to split water into protons, electrons and O 2 . In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O 2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called Y Z and the surrounding amino acids that comprise the O 2 -evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O 2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rana Hussein ◽  
Mohamed Ibrahim ◽  
Asmit Bhowmick ◽  
Philipp S. Simon ◽  
Ruchira Chatterjee ◽  
...  

AbstractLight-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.


Sign in / Sign up

Export Citation Format

Share Document