scholarly journals Untangling the sequence of events during the S2→ S3transition in photosystem II and implications for the water oxidation mechanism

2020 ◽  
Vol 117 (23) ◽  
pp. 12624-12635 ◽  
Author(s):  
Mohamed Ibrahim ◽  
Thomas Fransson ◽  
Ruchira Chatterjee ◽  
Mun Hon Cheah ◽  
Rana Hussein ◽  
...  

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2→ S3transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2→ S3transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QAand QB, are observed. At the donor site, tyrosine YZand His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a “water wheel”-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2→ S3transition mirrors the appearance of OXelectron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.

2014 ◽  
Vol 70 (a1) ◽  
pp. C723-C723
Author(s):  
Jan Kern ◽  
Rosalie Tran ◽  
Ruchira Chatterjee ◽  
Guangye Han ◽  
Roberto Alonso-Mori ◽  
...  

The photosynthetic water oxidation reaction is energetically demanding and mechanistically complex because of the difficulties in managing the four electron, four proton redox chemistry required for the evolution of molecular oxygen starting from two water molecules. The reaction takes place in Photosystem II (PS II), a multi-subunit membrane protein present in plants, algae, and cyanobacteria. This sunlight-driven reaction is catalyzed by an oxygen-evolving complex (OEC), that consists of an oxo-bridged four Mn and one Ca cluster. O2 is formed and released only after four oxidation equivalents are accumulated at the OEC. The structure of the Mn4CaO5 cluster has been studied by various spectroscopic and diffraction methods. The recent XRD study by Umena et al.[1] has shown the oxo-bridged Mn4Ca cluster structure at 1.9 Å resolution. Based on this high-resolution XRD structure, there have been efforts to obtain chemically optimized structures and structural changes of the Mn4CaO5 cluster during the catalytic cycle using spectroscopic parameters and theoretical approaches. EXAFS spectra of the PS II S states show that the structure of the Mn4CaO5 cluster changes during the catalytic cycle.[2] In particular, the short Mn-Mn distances change in the range of 2.7 to 2.9 Å. Such changes in oxygen-bridged Mn-Mn distances can reflect several chemical parameters; Mn oxidation state changes, protonation state changes of bridging oxygens, ligation modes (e.g. bidentate/monodentate), as well as fundamental changes in geometry. We have also used femtosecond X-ray spectroscopy and crystallography to study the catalytic process of the OEC.[3] The femtosecond X-ray pulses of the free-electron laser allows us to out-run X-ray damage at room temperature, and the time-evolution of the photo-induced reaction can be probed using a visible laser-pump followed by the X-ray-probe pulse. We will discuss a possible water oxidation mechanism based on these results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rana Hussein ◽  
Mohamed Ibrahim ◽  
Asmit Bhowmick ◽  
Philipp S. Simon ◽  
Ruchira Chatterjee ◽  
...  

AbstractLight-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.


2019 ◽  
Vol 116 (38) ◽  
pp. 18917-18922 ◽  
Author(s):  
David J. Vinyard ◽  
Syed Lal Badshah ◽  
M. Rita Riggio ◽  
Divya Kaur ◽  
Annaliesa R. Fanguy ◽  
...  

Photosystem II (PSII) performs the solar-driven oxidation of water used to fuel oxygenic photosynthesis. The active site of water oxidation is the oxygen-evolving complex (OEC), a Mn4CaO5 cluster. PSII requires degradation of key subunits and reassembly of the OEC as frequently as every 20 to 40 min. The metals for the OEC are assembled within the PSII protein environment via a series of binding events and photochemically induced oxidation events, but the full mechanism is unknown. A role of proton release in this mechanism is suggested here by the observation that the yield of in vitro OEC photoassembly is higher in deuterated water, D2O, compared with H2O when chloride is limiting. In kinetic studies, OEC photoassembly shows a significant lag phase in H2O at limiting chloride concentrations with an apparent H/D solvent isotope effect of 0.14 ± 0.05. The growth phase of OEC photoassembly shows an H/D solvent isotope effect of 1.5 ± 0.2. We analyzed the protonation states of the OEC protein environment using classical Multiconformer Continuum Electrostatics. Combining experiments and simulations leads to a model in which protons are lost from amino acid that will serve as OEC ligands as metals are bound. Chloride and D2O increase the proton affinities of key amino acid residues. These residues tune the binding affinity of Mn2+/3+ and facilitate the deprotonation of water to form a proposed μ-hydroxo bridged Mn2+Mn3+ intermediate.


2018 ◽  
Vol 44 (4) ◽  
pp. 543-549
Author(s):  
Ali Bashirzadeh ◽  
Zaman Mahmudov ◽  
Ralphreed Hasanov

Action sites of low positive temperature together with high light intensities in electron transport reactions of photosystem II (PSII) evaluated by ms range delayed fluorescence (ms-DLE) of chlorophyll a content in the maize and barley seedlings are presented. The main targets for these stress factors action were shown to be Yz and Mn4OxCa-cluster on the donor site of PSII in the case of simultaneous action of different temperatures and high light illumination and between QA and QB on the acceptor site of PSII in the case of low positive temperature influence only.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 371
Author(s):  
Koua

The Mn4CaO5 cluster site in the oxygen-evolving complex (OEC) of photosystem II (PSII) undergoes structural perturbations, such as those induced by Ca2+/Sr2+ exchanges or Ca/Mn removal. These changes have been known to induce long-range positive shifts (between +30 and +150 mV) in the redox potential of the primary quinone electron acceptor plastoquinone A (QA), which is located 40 Å from the OEC. To further investigate these effects, we reanalyzed the crystal structure of Sr-PSII resolved at 2.1 Å and compared it with the native Ca-PSII resolved at 1.9 Å. Here, we focus on the acceptor site and report the possible long-range interactions between the donor, Mn4Ca(Sr)O5 cluster, and acceptor sites.


2020 ◽  
Vol 118 (21-22) ◽  
pp. e1725168
Author(s):  
K. Yamaguchi ◽  
S. Yamanaka ◽  
H. Isobe ◽  
M. Shoji ◽  
K. Miyagawa ◽  
...  

2021 ◽  
Vol 7 (9) ◽  
pp. 131
Author(s):  
Maria Chrysina ◽  
Georgia Zahariou ◽  
Nikolaos Ioannidis ◽  
Yiannis Sanakis ◽  
George Mitrikas

The biological water oxidation takes place in Photosystem II (PSII), a multi-subunit protein located in thylakoid membranes of higher plant chloroplasts and cyanobacteria. The catalytic site of PSII is a Mn4Ca cluster and is known as the oxygen evolving complex (OEC) of PSII. Two tyrosine residues D1-Tyr161 (YZ) and D2-Tyr160 (YD) are symmetrically placed in the two core subunits D1 and D2 and participate in proton coupled electron transfer reactions. YZ of PSII is near the OEC and mediates electron coupled proton transfer from Mn4Ca to the photooxidizable chlorophyll species P680+. YD does not directly interact with OEC, but is crucial for modulating the various S oxidation states of the OEC. In PSII from higher plants the environment of YD• radical has been extensively characterized only in spinach (Spinacia oleracea) Mn- depleted non functional PSII membranes. Here, we present a 2D-HYSCORE investigation in functional PSII of spinach to determine the electronic structure of YD• radical. The hyperfine couplings of the protons that interact with the YD• radical are determined and the relevant assignment is provided. A discussion on the similarities and differences between the present results and the results from studies performed in non functional PSII membranes from higher plants and PSII preparations from other organisms is given.


2015 ◽  
Vol 112 (13) ◽  
pp. 3979-3984 ◽  
Author(s):  
Xichen Li ◽  
Per E. M. Siegbahn ◽  
Ulf Ryde

Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O–O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2–S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.


2008 ◽  
Vol 105 (46) ◽  
pp. 17632-17635 ◽  
Author(s):  
Javier J. Concepcion ◽  
Jonah W. Jurss ◽  
Joseph L. Templeton ◽  
Thomas J. Meyer

Light-driven water oxidation occurs in oxygenic photosynthesis in photosystem II and provides redox equivalents directed to photosystem I, in which carbon dioxide is reduced. Water oxidation is also essential in artificial photosynthesis and solar fuel-forming reactions, such as water splitting into hydrogen and oxygen (2 H2O + 4 hν → O2 + 2 H2) or water reduction of CO2 to methanol (2 H2O + CO2 + 6 hν → CH3OH + 3/2 O2), or hydrocarbons, which could provide clean, renewable energy. The “blue ruthenium dimer,” cis,cis-[(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+, was the first well characterized molecule to catalyze water oxidation. On the basis of recent insight into the mechanism, we have devised a strategy for enhancing catalytic rates by using kinetically facile electron-transfer mediators. Rate enhancements by factors of up to ≈30 have been obtained, and preliminary electrochemical experiments have demonstrated that mediator-assisted electrocatalytic water oxidation is also attainable.


Sign in / Sign up

Export Citation Format

Share Document