Materials behavior under Fast Compression or Decompression

2014 ◽  
Vol 70 (a1) ◽  
pp. C397-C397
Author(s):  
Guoyin Shen ◽  
Stanislav Sinogeikin ◽  
Jesse Smith

Phase transformation pathways are strongly influenced by the time dependence of the driving mechanism (compression, thermal transfer, strain, irradiation, etc). While thermal rate has been widely used for centuries for enhancing materials properties such as hardened steels or metallic glasses through rapid cooling, the application of compression rate is relatively new. Yet it drives rich new physics, novel chemistry, exceptional energy materials, and new routes of materials synthesis, and has become an important impetus in studying materials metastability, phase growth, and transition kinetics. In this talk, we will outline recently developed capabilities at HPCAT at the Advanced Photon Source for studying materials behavior under fast compression or decompression, including both single event loading or unloading and multiple, repetitive ramping events. A few recent studies will be highlighted. For example, a compression rate of 17 TPa per second has been reached in a piezo-driven diamond anvil cell; fast compression experiments significantly improve the precision in thermal equation of state determinations; the feasibility of controlled formation of metastable phases of Si and Ge has been demonstrated under controlled decompression rate; the phase transition kinetics of B1-B2 transitions in NaCl and KCl have been studied under various compression and decompression rates.

2018 ◽  
Author(s):  
Younghwan Cha ◽  
Jung-In Lee ◽  
Panpan Dong ◽  
Xiahui Zhang ◽  
Min-Kyu Song

A novel strategy for the oxidation of Mg-based intermetallic compounds using CO<sub>2</sub> as an oxidizing agent was realized via simple thermal treatment, called ‘CO2-thermic Oxidation Process (CO-OP)’. Furthermore, as a value-added application, electrochemical properties of one of the reaction products (carbon-coated macroporous silicon) was evaluated. Considering the facile tunability of the chemical/physical properties of Mg-based intermetallics, we believe that this route can provide a simple and versatile platform for functional energy materials synthesis as well as CO<sub>2</sub> chemical utilization in an environment-friendly and sustainable way.


2022 ◽  
Vol 9 ◽  
Author(s):  
Andreas Borgschulte ◽  
Jasmin Terreni ◽  
Benjamin Fumey ◽  
Olga Sambalova ◽  
Emanuel Billeter

The kinetics of most chemical energy storage/conversion systems depend on the mass transport through matter, which is rate-limited by various kinetic barriers. The distinction of the barriers by static and dynamic interfaces helps in reducing their impact and therefore enhancing the overall kinetics. The concept is introduced along examples of static and dynamic interfaces in hydrogen storage, thermal energy storage in absorptive media, and electrochemical water splitting and CO2 reduction. In addition to the description of analysis methods to probe static and dynamic interfaces, the general strategy as well as concrete examples to overcome them are discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simone Anzellini ◽  
Daniel Errandonea ◽  
Claudio Cazorla ◽  
Simon MacLeod ◽  
Virginia Monteseguro ◽  
...  

2018 ◽  
Author(s):  
Younghwan Cha ◽  
Jung-In Lee ◽  
Panpan Dong ◽  
Xiahui Zhang ◽  
Min-Kyu Song

A novel strategy for the oxidation of Mg-based intermetallic compounds using CO<sub>2</sub> as an oxidizing agent was realized via simple thermal treatment, called ‘CO2-thermic Oxidation Process (CO-OP)’. Furthermore, as a value-added application, electrochemical properties of one of the reaction products (carbon-coated macroporous silicon) was evaluated. Considering the facile tunability of the chemical/physical properties of Mg-based intermetallics, we believe that this route can provide a simple and versatile platform for functional energy materials synthesis as well as CO<sub>2</sub> chemical utilization in an environment-friendly and sustainable way.


2015 ◽  
Vol 410 ◽  
pp. 39-46 ◽  
Author(s):  
Chuanjiang Liu ◽  
Haifei Zheng ◽  
Jianguo Du ◽  
Duojun Wang

Sign in / Sign up

Export Citation Format

Share Document