scholarly journals Design of porous metal–organic frameworks (MOFs) for heterogeneous catalysis

2017 ◽  
Vol 73 (a2) ◽  
pp. C1153-C1153
Author(s):  
C. M. Nagaraja ◽  
Bharat Ugale ◽  
Sandeep Dhankar
2014 ◽  
Vol 1 (10) ◽  
pp. 721-734 ◽  
Author(s):  
Sha Ou ◽  
Chuan-De Wu

The recently developed strategies on designed synthesis of porous metal–organic framework catalysts and their interesting catalytic properties are summarized in this short review.


2019 ◽  
Vol 7 (11) ◽  
pp. 1743-1758 ◽  
Author(s):  
Liang Feng ◽  
Kun-Yu Wang ◽  
Xiu-Liang Lv ◽  
Tian-Hao Yan ◽  
Hong-Cai Zhou

Abstract Despite numerous advantages, applications of conventional microporous metal–organic frameworks (MOFs) are hampered by their limited pore sizes, such as in heterogeneous catalysis and guest delivery, which usually involve large molecules. Construction of hierarchically porous MOFs (HP-MOFs) is vital to achieve the controllable augmentation of MOF pore size to mesopores or even macropores, which can enhance the diffusion kinetics of guests and improve the storage capacity. This review article focuses on recent advances in the methodology of HP-MOF synthesis, covering preparation of HP-MOFs with intrinsic hierarchical pores, and modulated, templated and template-free synthetic strategies for HP-MOFs. The key factors which affect the formation of HP-MOF architectures are summarized and discussed, followed by a brief review of their applications in heterogeneous catalysis and guest encapsulation. Overall, this review presents a roadmap that will guide the future design and development of HP-MOF materials with molecular precision and mesoscopic complexity.


Author(s):  
Marco Ranocchiari ◽  
Christian Lothschütz ◽  
Daniel Grolimund ◽  
Jeroen Anton van Bokhoven

Single-site heterogeneous catalysis has been recently accepted as a novel branch of heterogeneous catalysis. Catalysts with single-atom active sites (SAHCs) allow the design and fine-tuning of the active moiety, and can potentially combine the advantages of heterogeneous and homogeneous catalysis. This study illustrates how porous metal-organic frameworks (MOFs) can be synthesized with homogeneous distribution of SAHCs. The catalytic potential of MIXMOFs is shown. A short overview of catalysis with mesoporous silica materials is described to demonstrate their importance in SAHC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


2011 ◽  
Vol 112 (2) ◽  
pp. 1196-1231 ◽  
Author(s):  
Minyoung Yoon ◽  
Renganathan Srirambalaji ◽  
Kimoon Kim

2008 ◽  
Vol 130 (6) ◽  
pp. 1833-1835 ◽  
Author(s):  
Farid Nouar ◽  
Jarrod F. Eubank ◽  
Till Bousquet ◽  
Lukasz Wojtas ◽  
Michael J. Zaworotko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document