scholarly journals Crystal structure of bis(tetraphenylphosphonium) bis(cyanido-κC)(29H,31H-tetrabenzo[b,g,l,q]porphinato-κ4N29,N30,N31,N32)ferrate(II) acetone disolvate

Author(s):  
Miki Nishi ◽  
Masaki Matsuda ◽  
Norihisa Hoshino ◽  
Tomoyuki Akutagawa

The crystal structure of the title compound, (C24H20P)2[Fe(C36H20N4)(CN)2]·2C3H6O, is constructed from a tetrahedral Ph4P+(tetraphenylphosphonium) cation, one [Fe(tbp)(CN)2]2−anion (tbp = tetrabenzoporphyrin in its doubly deprotonated form), located on a centre of inversion, and an acetone molecule as crystallization solvent. Since the molecular structure of theM(tbp) moiety is insensitive to the kind of metal ion and its oxidation state, bond lengths and angles in the [Fe(tbp)(CN)2]2−anion are similar to those in otherM(tbp) compounds. The Fe2+ion, located on a centre of inversion, is coordinated by four N atoms of tpb in the equatorial plane and by two C atoms of the cyanide anion at axial positions in a slightly distorted octahedral configuration. The packing is stabilized by C—H...N interactions between the Ph4P+cation and the CN−ligand of the [Fe(tbp)(CN)2]2−anion, and by C—H...π interactions between the Ph4P+cation, acetone solvent molecules and the [Fe(tbp)(CN)2]2−anion.

2018 ◽  
Vol 74 (12) ◽  
pp. 1847-1850 ◽  
Author(s):  
Saima Kamaal ◽  
Md. Serajul Haque Faizi ◽  
Akram Ali ◽  
Musheer Ahmad ◽  
Turganbay Iskenderov

In the crystal of the title compound, C15H13NO4·CH3OH, the Schiff base molecule exists in the zwitterionic form; an intramolecular N—H...O hydrogen bond stabilizes the molecular structure. The benzene rings are nearly co-planar, subtending a dihedral angle of 5.34 (2)°. In the crystal, classical O—H...O and weak C—H...O hydrogen bonds link the Schiff base molecules and methanol solvent molecules into a three-dimensional supramolecular architecture. The crystal studied was refined as an inversion twin.


2016 ◽  
Vol 72 (12) ◽  
pp. 1683-1686 ◽  
Author(s):  
Iuliia Shatrava ◽  
Kateryna Gubina ◽  
Vladimir Ovchynnikov ◽  
Viktoriya Dyakonenko ◽  
Vladimir Amirkhanov

In the molecular structure of the title compound, [CaNa(C10H20Cl3N3O2P)3(H2O)], the Ca2+ion has a slightly distorted octahedral coordination environment defined by six O atoms which belong to the carbonyl and phosphoryl groups of the three coordinating ligands. Two Cl atoms of CCl3groups and four O atoms form the coordination environment of the Na+ion: three from the carbonyl groups of ligands and one O atom from a coordinating water molecule. In the crystal, the bimetallic complexes are assembled into chains along thec-axis directionviaO—H...O hydrogen bonds that involve the coordinating water molecules and the phosphoryl groups.


Author(s):  
Bambar Davaasuren ◽  
Harihara Padhy ◽  
Alexander Rothenberger

In the title compound, [FeIr(C5H5)(C20H14N3)Cl3]·2CH3CN, the central IrIIIatom is sixfold coordinated by three chloride ligands and three terpyridine N atoms in a slightly distorted octahedral fashion. The terpyridine ligand is functionalized at the 4′-position with a ferrocenyl group, the latter being in an eclipsed conformation. In the crystal, molecules are stacked in rows parallel to [001], with the acetonitrile solvent molecules situated between the rows. An extensive network of intra- and intermolecular C—H...Cl interactions is present, stabilizing the three-dimensional structure.


Author(s):  
Bougar Sarr ◽  
Abdou Mbaye ◽  
Cheikh Abdoul Khadir Diop ◽  
Mamadou Sidibe ◽  
Yoann Rousselin

The organic–inorganic title salt, (C6H16N)2[Sn(C2O4)2Cl2] or ( i Pr2NH2)2[Sn(C2O4)2Cl2], was obtained by reacting bis(diisopropylammonium) oxalate with tin(IV) chloride dihydrate in methanol. The SnIV atom is coordinated by two chelating oxalate ligands and two chloride ions in cis positions, giving rise to an [Sn(C2O4)2Cl2]2− anion (point group symmetry 2), with the SnIV atom in a slightly distorted octahedral coordination. The cohesion of the crystal structure is ensured by the formation of N—H...O hydrogen bonding between (iPr2NH2)+ cations and [SnCl2(C2O4)2]2− anions. This gives rise to an infinite chain structure extending parallel to [101]. The main inter-chain interactions are van der Waals forces. The electronic spectrum of the title compound displays only one high intensity band in the UV region assignable to ligand–metal ion charge-transfer (LMCT) transitions. An IR spectrum was also recorded and is discussed.


Author(s):  
Rosario C. Sausa ◽  
Rose A. Pesce-Rodriguez ◽  
Leah A. Wingard ◽  
Pablo E. Guzmán ◽  
Jesse J. Sabatini

The molecular structure of the title energetic compound, C8H6N4O8, is composed of two planar isoxazole rings and two near planar alkyl-nitrate groups (r.m.s deviation = 0.006 Å). In the crystal, the molecule sits on an inversion center, thusZ′ = 0.5. The dihedral angle between the isoxazole ring and the nitrate group is 69.58 (8)°. van der Waals contacts dominate the intermolecular interactions. Inversion-related rings are in close slip-stacked proximity, with an interplanar separation of 3.101 (3) Å [centroid–centroid distance = 3.701 (3) Å]. The measured and calculated densities are in good agreement (1.585versus1.610 Mg m−3).


Author(s):  
Selvam Karthik ◽  
Arunachalam Thirugnanasambandam ◽  
Pradeep Kumar Mandal ◽  
Namasivayam Gautham

The X-ray crystal structure of the DNA tetradecamer sequence d(CCGGGGTACCCCGG)2is reported at 1.4 Å resolution in the tetragonal space groupP41212. The sequence was designed to fold as a four-way junction. However, it forms an A-type double helix in the presence of barium chloride. The metal ion could not be identified in the electron-density map. The crystallographic asymmetric unit consists of one A-type double helix with 12 base pairs per turn, in contrast to 11 base pairs per turn for canonical A-DNA. A large number of solvent molecules have been identified in both the grooves of the duplex and around the backbone phosphate groups.


Author(s):  
Sevim Türktekin Çelikesir ◽  
Mehmet Akkurt ◽  
Aliasghar Jarrahpour ◽  
Habib Allah Shafie ◽  
Ömer Çelik

In the title compound, C22H18N2O5, the central β-lactam ring (r.m.s. deviation = 0.002 Å) makes dihedral angles of 64.21 (14), 82.35 (12) and 20.66 (13)° with the phenyl ring and the nitro- and methoxybenzene rings, respectively. The molecular structure is stabilized by an intramolecular C—H...O hydrogen bond. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming slabs lying parallel to (111). The slabs are linkedviaC—H...π interactions, forming a three-dimensional network.


2017 ◽  
Vol 73 (9) ◽  
pp. 1329-1332
Author(s):  
Md. Serajul Haque Faizi ◽  
Necmi Dege ◽  
Sergey Malinkin ◽  
Tetyana Yu. Sliva

The title compound, C25H20N2, (I), was synthesized from the condensation reaction of anthracene-9-carbaldehyde and tryptamine in dry ethanol. The indole ring system (r.m.s. deviation = 0.016 Å) makes a dihedral angle of 63.56 (8)° with the anthracene ring (r.m.s. deviation = 0.023 Å). There is a short intramolecular C—H...N interaction present, and a C—H...π interaction involving the two ring systems. In the crystal, the indole H atom forms an intermolecular N—H...π interaction, linking molecules to form chains along theb-axis direction. There are also C—H...π interactions present, involving the central and terminal rings of the anthracene unit, linking the chains to form an overall two-dimensional layered structure, with the layers parallel to thebcplane. The density functional theory (DFT) optimized structure, at the B3LYP/6-311 G(d,p) level, is compared with the experimentally determined molecular structure in the solid state.


1981 ◽  
Vol 59 (11) ◽  
pp. 1665-1670 ◽  
Author(s):  
Kenneth S. Chong ◽  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Crystals of [dimethyl(3,5-dimethyl-l-pyrazolyl)(ethanolamino)gallato(N(2),O,N(3))](η3-cycloheptatrienyl)dicarbonylmolybdenum are monoclinic, a = 10.511(1), b = 8.335(1), c = 24.138(3) Å, β = 102.22(1)°, Z = 4, space group P21/c. The structure was solved by Patterson and Fourier syntheses and was reflned by full-matrix least-squares procedures to R = 0.028 and Rw = 0.046 for 3708 reflections with I ≥ 3σ(I). The crystal structure consists of discrete molecules linked by N—H … O hydrogen bonds (N … O = 2.929(5) Å). The Mo atom is in a distorted octahedral environment with the η3-C7H7 ligand occupying one coordination site, trans to the amino nitrogen, as a π-donating ligand. Important bond distances (corrected for libration) are: Mo—O, 2.245(2), Mo—N(amino), 2.249(3), Mo—N(pyrazolyl), 2.270(3), Mo—C(O), 1.950(4) and 1.947(4), Mo—C(C7H7), 2.176(4), 2.364(4), and 2.380(4), Ga—O, 1.919(3), Ga—N, 1.984(3), and Ga—C, 1.982(5) and 1.983(5) Å. An unusual type of disorder is present in which a second image of the molecule, approximately mirrored by the plane y = 1/4, is in evidence at low occupancy.


2014 ◽  
Vol 70 (9) ◽  
pp. o924-o925 ◽  
Author(s):  
Raúl Castañeda ◽  
Sofia A. Antal ◽  
Sergiu Draguta ◽  
Tatiana V. Timofeeva ◽  
Victor N. Khrustalev

In an attempt to grow 8-hydroxyquinoline–acetaminophen co-crystals from equimolar amounts of conformers in a chloroform–ethanol solvent mixture at room temperature, the title compound, C9H7NO, was obtained. The molecule is planar, with the hydroxy H atom forming an intramolecular O—H...N hydrogen bond. In the crystal, molecules form centrosymmetric dimersviatwo O—H...N hydrogen bonds. Thus, the hydroxy H atoms are involved in bifurcated O—H...N hydrogen bonds, leading to the formation of a central planar four-membered N2H2ring. The dimers are bound by intermolecular π–π stacking [the shortest C...C distance is 3.2997 (17) Å] and C—H...π interactions into a three-dimensional framework. The crystal grown represents a new monoclinic polymorph in the space groupP21/n. The molecular structure of the present monoclinic polymorph is very similar to that of the orthorhombic polymorph (space groupFdd2) studied previously [Roychowdhuryet al.(1978).Acta Cryst.B34, 1047–1048; Banerjee & Saha (1986).Acta Cryst.C42, 1408–1411]. The structures of the two polymorphs are distinguished by the different geometries of the hydrogen-bonded dimers, which in the crystal of the orthorhombic polymorph possess twofold axis symmetry, with the central N2H2ring adopting a butterfly conformation.


Sign in / Sign up

Export Citation Format

Share Document