scholarly journals Structure cristalline, caractérisation spectroscopique, calcul DFT et analyse de surface Hirshfeld du perchlorate de p-toluidinium

Author(s):  
Meriam Ben Jomaa ◽  
Hammouda Chebbi ◽  
Noura Fakhar Bourguiba ◽  
Mohamed Faouzi Zid

The synthesis of p-toluidinium perchlorate (systematic name: 4-methylanilinium perchlorate), C7H10N+·ClO4 −, was carried out from an aqueous reaction of perchloric acid with p-toluidine. This compound was characterized by powder XRD, IR and UV–Vis spectroscopy. The structure was further confirmed by a single-crystal X-ray diffraction study. The crystal structure is formed by a succession of two-dimensional molecular layers consisting of perchlorate anions and organic cations parallel to the (100) plane and located at x = 2n + ½ (n ∈ Z). Each mixed layer is formed by infinite chains {C7H10N+·ClO4 −} n parallel to the [010] direction and developing along the c axis, generating R 2 4(8), R 2 2(4) and R 4 4(12) graph-set motifs. The results of a theoretical study using the DFT method at the B3LYP/6–311++G(d,p) level are in good agreement with the experimental data. Hirshfeld surface and fingerprint plots reveal that the structure is dominated by O...H/H...O (54.2%), H...H (26.9%) and C—H ...π (14.3%) contacts. The studied crystal was refined as a two-component twin

2005 ◽  
Vol 61 (6) ◽  
pp. 717-723 ◽  
Author(s):  
Patricia Lozano-Casal ◽  
David R. Allan ◽  
Simon Parsons

The crystal structure of cyclopropylamine at 1.2 GPa has been determined by X-ray diffraction methods. The structure of this phase is orthorhombic, space group Pbca and the unit-cell dimensions are a =  5.0741 (10), b  =  9.7594 (10) and c  =  13.305 (2) Å. Only one of the two H atoms of the amino group actively participates in the formation of the hydrogen-bonded chains, C(2) in graph-set notation, which lie parallel to the crystallographic a axis. Additionally, the topology of the crystal packing is studied using both Voronoi–Dirichlet polyhedra and Hirshfeld surface analyses for the low-temperature and the high-pressure structures of cyclopropylamine and the results are compared.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Eric D. Fussell ◽  
Ampofo Darko

In this article, we describe the synthesis of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) adducts of rhodium(II) carboxylate complexes, [Rh2(μ-O2CCR3)4(DBU)2] (R = H (1), Me (2)). The DBU ligand is coordinated to the axial site in both adducts via the imido-nitrogen atom, and single-crystal X-ray diffraction analysis of 1 and 2 revealed structurally similar attributes between the compounds. The Rh–Rh bond distance is 2.4108(3) Å for 1 and 2.4143(2) Å for 2. The Rh–N distance is 2.2681(3) Å for compound 1 and 2.2587(10) Å for compound 2. Compound 1, however, crystallized with solvent molecules in its unit cell, and Hirshfeld surface analysis showed intermolecular C–H···O interactions between oxygen atoms of [Rh2(μ-O2CCH3)4] and the hydrogen of the chloroform solvent among other intermolecular close-contact interactions. The crystal structure of compound 2 was found to be devoid of solvent and showed weak intramolecular C–H···O interactions from the DBU axial ligand to the oxygens of the bridging acetates. Otherwise, Hirshfeld analysis showed that 2 was dominated by H···H interactions. UV-vis spectroscopy of both adducts was also conducted in different solvents to examine shifts attributed to the π*(Rh2) to σ*(Rh2) band.


2017 ◽  
Vol 73 (10) ◽  
pp. 1453-1457 ◽  
Author(s):  
Hammouda Chebbi ◽  
Abdessalem Boumakhla ◽  
Mohamed Faouzi Zid ◽  
Abderrahmen Guesmi

The synthesis of 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium diperchlorate, C9H22N22+·2ClO4−, was carried out from an aqueous reaction of perchloric acid with 4-amino-2,2,6,6-tetramethylpiperidine. This compound was characterized by TGA–DSC analysis and single-crystal X-ray diffraction. The piperidine ring of the dication adopts a chair conformation and the orientation of the C—NH3bond is equatorial. One of the two crystallographically independent perchlorate anions exhibits disorder [occupancies 0.625 (7) and 0.375 (7)]. The crystal packing is constituted by a succession of mixed layers parallel to the (-102) plane, made up of C9H22N22+dications and ClO4−anions. These ions are linked by normal and bifurcated N—H...O hydrogen bonds withR44(12) graph-set motifs, generating a two-dimensional network. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis.


Author(s):  
Volodymyr Medviediev ◽  
Marek Daszkiewicz

Crystal structures of six new salts of 2-methyl-5-nitroaniline with inorganic acids [(H2Me5NA)Br, (H2Me5NA)I, (H2Me5NA)NO3, (H2Me5NA)Cl, (H2Me5NA)HSO4 and (H2Me5NA)I3·0.5H2O] are determined by single-crystal X-ray diffraction. The most important hydrogen-bonding patterns are formed by the ammonio group and respective anions composing 1D or 2D networks. The patterns are analysed using the graph-set approach and mathematical interrelations between graph-set descriptors are shown for comparative purposes. Analysis of IR spectra enables the strength of hydrogen bonds in the crystals to be assessed. The frequency of N—H and O—H stretching vibrations and NH3 group libration indicates that the strongest hydrogen bonds are present in (H2Me5NA)HSO4, whereas the weakest ones occur in (H2Me5NA)I3·0.5H2O. Hirshfeld surface analysis reveals that apart from obvious N—H...anion hydrogen bonds, the molecules are also connected to each other by exclusive C—H...ONO2 interactions. The opposite occurs in the crystal structure of 2-methyl-4-nitroaniline salts, where a variety of ONO2...π(N)NO2 non-hydrogen bonding interactions are observed.


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


1994 ◽  
Vol 376 ◽  
Author(s):  
M. Vrána ◽  
P. Klimanek ◽  
T. Kschidock ◽  
P. Lukáš ◽  
P. Mikula

ABSTRACTInvestigation of strongly distorted crystal structures caused by dislocations, stacking-faults etc. in both plastically deformed f.c.c. and b.c.c. metallic materials was performed by the analysis of the neutron diffraction line broadening. Measurements were realized by means of the high resolution triple-axis neutron diffractometer equipped by bent Si perfect crystals as monochromator and analyzer at the NPI Řež. The substructure parameters obtained in this manner are in good agreement with the results of X-ray diffraction analysis.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


1991 ◽  
Vol 238 ◽  
Author(s):  
Y. Huai ◽  
R. W. Cochrane ◽  
Y. Shi ◽  
H. E. Fischer ◽  
M. Sutton

ABSTRACTThe structures of equal-thickness Co/Re multilayer films and several Co/Re bilayer films have been investigated by X-ray diffraction at low and high angles. Analysis of low-angle reflectivity data from bilayer films indicates that interfacial intermixing is limited to three monolayers and that the two interfacial configurations are different. The high-angle X-ray diffraction data show that multilayer films have coherent interfaces and a highly textured structure with hep [002] orientations normal to the film plane for periods 21 Å ≤ Λ ≤220 Å. Detailed structures have been determined by fitting the X-ray spectra to calculated ones using a trapezoidal model. The results indicate that samples with 42 Å≤ Λ ≤220 Å have relatively sharp interfaces, in good agreement with the bilayer results. In addition, an out-of-plane expansion of the Co (002) layer is observed in samples with large Λ and results from structural disorder leading to a reduced atomic density. For Λ <21 Å the interfaces arise from the rougher surfaces of the deposited layers.


Sign in / Sign up

Export Citation Format

Share Document