scholarly journals 5,5-Dichloro-6-hydroxydihydropyrimidine-2,4(1H,3H)-dione: molecular and crystal structure, Hirshfeld surface analysis and the new route for synthesis with Mg(ReO4)2 as a new catalyst

2020 ◽  
Vol 76 (10) ◽  
pp. 1557-1561
Author(s):  
Anton P. Novikov ◽  
Sergey N. Ryagin ◽  
Mikhail S. Grigoriev ◽  
Alexey V. Safonov ◽  
Konstantin E. German

The molecular and crystal structures of the title compound, C4H4Cl2N2O3, were investigated by single-crystal X-ray diffraction and a Hirshfeld surface analysis. The title compound was synthesized by a new type of reaction using Mg(ReO4)2 as a new catalyst and a possible mechanism for this reaction is proposed. The six-membered ring adopts a half-chair conformation. In the crystal, hydrogen bonds connect the molecules into double layers, which are connected to each other by halogen bonds. The Hirshfeld surface analysis revealed that the most important contributions for the crystal packing are from O...H/H...O (35.8%), Cl...Cl (19.6%), Cl...H/H...Cl (17.0%), H...H (8.3%), C...O/O...C (4.3%), Cl...O/O...Cl (4.2%) and O...O (4.1%) contacts.

Author(s):  
Anton P. Novikov ◽  
Alexey A. Bezdomnikov ◽  
Mikhail S. Grigoriev ◽  
Konstantin E. German

The molecular and crystal structures of the title compound, C8H4F5NO, were examined by single-crystal X-ray diffraction and Hirshfeld surface analysis. The title compound was synthesized by a new method at the interface of aqueous solutions of LiOH and pentafluorophenylacetonitrile. In the crystal, hydrogen bonds and π–halogen interactions connect the molecules into double layers. Analysis of the Hirshfeld surface showed that the most important contributions to the crystal packing are made by F...F (30.4%), C...F/F...C (22.9%), O...H/H...O (14.9%), H...F/F...H (14.0%) and H...H (10.2%) contacts. The Hirshfeld surfaces of analogues of the title compound were compared and the effect of perfluorination on the crystal packing was shown.


Author(s):  
Rubina Siddiqui ◽  
Urooj Iqbal ◽  
Zafar Saeed Saify ◽  
Shammim Akhter ◽  
Sammer Yousuf

The title compound, C31H46NO7 +·Cl−, was synthesized by a one-pot Mannich condensation reaction. In the molecule, the piperidinone ring adopts a chair conformation, and the trimethoxy-substituted benzene rings and octyl chain are arranged equatorially. In the crystal, centrosymmetric dimers are linked into layers parallel to (011) by N—H...Cl and C—H...Cl hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are O...H (20.5%) interactions followed by C...H (7.8%), Cl...H (5.5%), C...C (1.2%), C...O (0.5%) and Cl...O (0.4%) interactions.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Author(s):  
Shaaban K. Mohamed ◽  
Awad I. Said ◽  
Joel T. Mague ◽  
Talaat I. El-Emary ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C33H26N4O4, the two fused five-membered rings and their N-bound aromatic substituents form a pincer-like motif. The relative conformations about the three chiral carbon atoms are established. In the crystal, a combination of C—H...O and C—H...N hydrogen bonds and C—H...π(ring) interactions leads to the formation of layers parallel to the bc plane. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H...H (44.3%), C...H/H...C (29.8%) and O...H/H...O (15.0%) contacts.


Author(s):  
Sitthichok Mongkholkeaw ◽  
Apisit Songsasen ◽  
Tanwawan Duangthongyou ◽  
Kittipong Chainok ◽  
Songwut Suramitr ◽  
...  

In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the molecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H...H, H...Cl/Cl...H, H...C/C...H, H...O/O...H and H...S/S...H. π–π interactions between inversion-related molecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum.


Author(s):  
Mustapha Tiouabi ◽  
Raphaël Tabacchi ◽  
Helen Stoeckli-Evans

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains propagating along the c-axis direction.


Author(s):  
K. Osahon Ogbeide ◽  
Rajesh Kumar ◽  
Mujeeb-Ur-Rehman ◽  
Bodunde Owolabi ◽  
Abiodun Falodun ◽  
...  

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl 3-phenylprop-2-enoate}, was isolated from a medicinally important plant,Caesalpinia pulcherrima(Fabaceae). In the molecule, three cyclohexane rings aretrans-fused and adopt chair, chair and half-chair conformations. In the crystal, molecules are linkedviaO—H...O hydrogen bonds, forming a tape structure along theb-axis direction. The tapes are further linked into a double-tape structure through C—H...π interactions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H...H (65.5%), C...H (18.7%), O...H (14.5%) and C...O (0.3%).


Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.


2018 ◽  
Vol 74 (12) ◽  
pp. 1746-1750 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Brahim Hni ◽  
Joel T. Mague ◽  
...  

In the title compound, C21H20N4O2, the intramolecular C—H...O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H...O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.8%), H...C/C...H (30.7%) and H...O/O...H (11.2%) interactions.


Sign in / Sign up

Export Citation Format

Share Document